In cells, ATP (adenosine triphosphate)-driven motor proteins, both cytoskeletal and nucleic acid-based, operate on their corresponding ‘tracks’, that is, actin, microtubules or nucleic acids, by converting the chemical energy of ATP hydrolysis into mechanical work. During each mechanochemical cycle, a motor proceeds via several nucleotide states, characterized by different affinities for the ‘track’ filament and different nucleotide (ATP or ADP) binding kinetics, which is crucial for a motor to efficiently perform its cellular functions. The measurements of the rupture force between the motor and the track by applying external loads to the individual motor–substrate bonds in various nucleotide states have proved to be an important tool to obtain valuable insights into the mechanism of the motors' performance. We review the application of this technique to various linear molecular motors, both processive and non-processive, giving special attention to the importance of the experimental geometry.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Thursday, August 5, 2010
Insights into the mechanisms of myosin and kinesin molecular motors from the single-molecule unbinding force measurements
Sergey V. Mikhailenko, Yusuke Oguchi and Shin'ichi Ishiwata
In cells, ATP (adenosine triphosphate)-driven motor proteins, both cytoskeletal and nucleic acid-based, operate on their corresponding ‘tracks’, that is, actin, microtubules or nucleic acids, by converting the chemical energy of ATP hydrolysis into mechanical work. During each mechanochemical cycle, a motor proceeds via several nucleotide states, characterized by different affinities for the ‘track’ filament and different nucleotide (ATP or ADP) binding kinetics, which is crucial for a motor to efficiently perform its cellular functions. The measurements of the rupture force between the motor and the track by applying external loads to the individual motor–substrate bonds in various nucleotide states have proved to be an important tool to obtain valuable insights into the mechanism of the motors' performance. We review the application of this technique to various linear molecular motors, both processive and non-processive, giving special attention to the importance of the experimental geometry.
In cells, ATP (adenosine triphosphate)-driven motor proteins, both cytoskeletal and nucleic acid-based, operate on their corresponding ‘tracks’, that is, actin, microtubules or nucleic acids, by converting the chemical energy of ATP hydrolysis into mechanical work. During each mechanochemical cycle, a motor proceeds via several nucleotide states, characterized by different affinities for the ‘track’ filament and different nucleotide (ATP or ADP) binding kinetics, which is crucial for a motor to efficiently perform its cellular functions. The measurements of the rupture force between the motor and the track by applying external loads to the individual motor–substrate bonds in various nucleotide states have proved to be an important tool to obtain valuable insights into the mechanism of the motors' performance. We review the application of this technique to various linear molecular motors, both processive and non-processive, giving special attention to the importance of the experimental geometry.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment