.

Monday, July 5, 2010

Controlled rotation and orientation of rubrene particles and Escherichia coli using optical tweezers

X. C. Li and X. D. Sun

Optical trapping and rotating of suspended micro-sized rubrene particles were performed using optical tweezers with circularly polarized light. The experimental results show that the rotation speed of the rubrene particles is proportional to the laser power, and the orientation of the rubrene particles can be controlled by the optical tweezers with linearly polarized light. Interestingly, by combining with the rubrene particle, the Escherichia coli (E. coli) can be rotated and oriented by optical tweezers. However, the rotating and orientating are mainly determined by the characteristics of rubrene particles. Our experiment provides a simple and convenient way to orient biological particles even if they are not sensitive to the polarization of the laser beam. Moreover, the rubrene can emit strong fluorescence when excited by the laser at the wavelength of 532 nm, and which can be potential applied to manipulate other particles with the fluorescence characteristics.

DOI

No comments: