.

Sunday, June 20, 2010

Evaluation of radiation force acting on macromolecules by combination of Brownian dynamics simulation with fluorescence correlation spectroscopy

Syoji Ito, Naoki Toitani, Hiroaki Yamauchi, and Hiroshi Miyasaka

The effect of optical gradient force from a focused laser beam on the fluorescence correlation spectroscopy (FCS) was investigated by a computing method based on Brownian dynamics simulation. A series of calculations revealed that, in relatively shallow optical force potential up to 1.0kTR (TR=298.15 K), the conventional theoretical model of FCS without consideration of the optical gradient force could evaluate the increase in the average number of molecules and the diffusion time in the potential. On the other hand, large deviation between the simulated fluorescence correlation curve and the theoretical model was observed under the potential depth >1.0kTR. In addition, by integrating the optical force potential with the temperature elevation under optical trapping condition, it was deduced that the temperature rise does not seriously affect the average number of particles in the sampling area, but the average residence time is more sensitively affected by the temperature elevation. The present study using the simulation also provides a method to experimentally estimate molecular polarizabilities from FCS measurements.

DOI

No comments: