Raman spectra from single DNA molecules in their natural aqueous environment are presented. A DNA molecule that is anchored between two optically trapped dielectric beads is suspended in a solution with nanosized silver colloid particles. The nonspecific binding of the metal to the DNA enhances the Raman scattering that is excited by a near-infrared beam. A Raman spectrum is first recorded followed by a force-extension curve that verifies the presence of a single DNA molecule.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Friday, June 11, 2010
Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering
Satish Rao, Saurabh Raj, Stefan Balint, Carlota Bardina Fons, Susana Campoy, Montserrat Llagostera, and Dmitri Petrov
Raman spectra from single DNA molecules in their natural aqueous environment are presented. A DNA molecule that is anchored between two optically trapped dielectric beads is suspended in a solution with nanosized silver colloid particles. The nonspecific binding of the metal to the DNA enhances the Raman scattering that is excited by a near-infrared beam. A Raman spectrum is first recorded followed by a force-extension curve that verifies the presence of a single DNA molecule.
DOI
Raman spectra from single DNA molecules in their natural aqueous environment are presented. A DNA molecule that is anchored between two optically trapped dielectric beads is suspended in a solution with nanosized silver colloid particles. The nonspecific binding of the metal to the DNA enhances the Raman scattering that is excited by a near-infrared beam. A Raman spectrum is first recorded followed by a force-extension curve that verifies the presence of a single DNA molecule.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment