A single CW infrared laser beam can simultaneously trap and excite an individual colloidal quantum dot. Though the laser light is relatively weak, the excitation occurs through two-photon absorption. This finding eliminates the demand for an excitation light source in addition to a trapping laser in nanoscale experiments with simultaneous force-manipulation and quantum dot visualization. Also, we demonstrate that optical trapping efficiencies of individual quantum dots do not correlate with their emission wavelength or physical size.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Thursday, May 20, 2010
Two-Photon Quantum Dot Excitation during Optical Trapping
Liselotte Jauffred and Lene B. Oddershede
A single CW infrared laser beam can simultaneously trap and excite an individual colloidal quantum dot. Though the laser light is relatively weak, the excitation occurs through two-photon absorption. This finding eliminates the demand for an excitation light source in addition to a trapping laser in nanoscale experiments with simultaneous force-manipulation and quantum dot visualization. Also, we demonstrate that optical trapping efficiencies of individual quantum dots do not correlate with their emission wavelength or physical size.
A single CW infrared laser beam can simultaneously trap and excite an individual colloidal quantum dot. Though the laser light is relatively weak, the excitation occurs through two-photon absorption. This finding eliminates the demand for an excitation light source in addition to a trapping laser in nanoscale experiments with simultaneous force-manipulation and quantum dot visualization. Also, we demonstrate that optical trapping efficiencies of individual quantum dots do not correlate with their emission wavelength or physical size.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment