Gradient force plays an important role in optical tweezers technique. In this paper, the tunable gradient force in focal plane of the hyperbolic-cosine–Gaussian (ChG) beam is investigated numerically. The ChG beam contains one spiral vortex and one non-spiral vortex. Simulation results show that the gradient force distribution can be altered considerably by decentered parameters of ChG beam, topological number of the spiral vortex, and vortex parameter of the non-spiral vortex. Many novel gradient force patterns can occur, which means corresponding optical traps may come into being, including ring optical trap, multiple-point trap pattern, line optical trap, rectangle trap pattern, and rhombus trap pattern. In addition, force pattern evolution principle may also differ significantly.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Thursday, May 13, 2010
Tunable gradient force of hyperbolic-cosine–Gaussian beam with vortices
Xiumin Gao, Zhuo Li, Jian Wang, Lingling Sun and Songlin Zhuang
Gradient force plays an important role in optical tweezers technique. In this paper, the tunable gradient force in focal plane of the hyperbolic-cosine–Gaussian (ChG) beam is investigated numerically. The ChG beam contains one spiral vortex and one non-spiral vortex. Simulation results show that the gradient force distribution can be altered considerably by decentered parameters of ChG beam, topological number of the spiral vortex, and vortex parameter of the non-spiral vortex. Many novel gradient force patterns can occur, which means corresponding optical traps may come into being, including ring optical trap, multiple-point trap pattern, line optical trap, rectangle trap pattern, and rhombus trap pattern. In addition, force pattern evolution principle may also differ significantly.
Gradient force plays an important role in optical tweezers technique. In this paper, the tunable gradient force in focal plane of the hyperbolic-cosine–Gaussian (ChG) beam is investigated numerically. The ChG beam contains one spiral vortex and one non-spiral vortex. Simulation results show that the gradient force distribution can be altered considerably by decentered parameters of ChG beam, topological number of the spiral vortex, and vortex parameter of the non-spiral vortex. Many novel gradient force patterns can occur, which means corresponding optical traps may come into being, including ring optical trap, multiple-point trap pattern, line optical trap, rectangle trap pattern, and rhombus trap pattern. In addition, force pattern evolution principle may also differ significantly.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment