Although the properties of single kinesin molecular motors are well understood, it is not clear whether multiple motors pulling a single vesicle in a cell cooperate or interfere with one another. To learn how small numbers of motors interact, microtubule gliding assays were carried out with full-length Drosophila kinesin in a novel motility medium containing xanthan, a stiff, water-soluble polysaccharide. At 2 mg/ml xanthan, the zero-shear viscosity of this medium is 1,000 times the viscosity of water, similar to cellular viscosity. To mimic the rheological drag force on the motors when attached to a vesicle in a cell, we attached a 2 μm bead to one end of the microtubule (MT). During gliding assays in our novel medium, the moving bead exerted a drag force of 4–15 pN on the kinesins pulling the MT. The velocity of MTs with an attached bead increased with MT length and with kinesin concentration. The increase with MT length arose because the number of motors is directly proportional to MT length. Our results show that small numbers of kinesins cooperate constructively when pulling against a viscoelastic drag. In the absence of a bead but still in the viscous medium, MT velocity was independent of MT length and kinesin concentration because the thin MT, like a snake moving through grass, was able to move between xanthan molecules with little resistance. A minimal shared-load model in which the number of motors is proportional to MT length fits the observed dependence of gliding velocity on MT length and kinesin concentration.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Monday, April 19, 2010
Kinesin velocity increases with the number of motors pulling against viscoelastic drag
Jason Gagliano, Matthew Walb, Brian Blaker, Jed C. Macosko and George Holzwarth
Although the properties of single kinesin molecular motors are well understood, it is not clear whether multiple motors pulling a single vesicle in a cell cooperate or interfere with one another. To learn how small numbers of motors interact, microtubule gliding assays were carried out with full-length Drosophila kinesin in a novel motility medium containing xanthan, a stiff, water-soluble polysaccharide. At 2 mg/ml xanthan, the zero-shear viscosity of this medium is 1,000 times the viscosity of water, similar to cellular viscosity. To mimic the rheological drag force on the motors when attached to a vesicle in a cell, we attached a 2 μm bead to one end of the microtubule (MT). During gliding assays in our novel medium, the moving bead exerted a drag force of 4–15 pN on the kinesins pulling the MT. The velocity of MTs with an attached bead increased with MT length and with kinesin concentration. The increase with MT length arose because the number of motors is directly proportional to MT length. Our results show that small numbers of kinesins cooperate constructively when pulling against a viscoelastic drag. In the absence of a bead but still in the viscous medium, MT velocity was independent of MT length and kinesin concentration because the thin MT, like a snake moving through grass, was able to move between xanthan molecules with little resistance. A minimal shared-load model in which the number of motors is proportional to MT length fits the observed dependence of gliding velocity on MT length and kinesin concentration.
Although the properties of single kinesin molecular motors are well understood, it is not clear whether multiple motors pulling a single vesicle in a cell cooperate or interfere with one another. To learn how small numbers of motors interact, microtubule gliding assays were carried out with full-length Drosophila kinesin in a novel motility medium containing xanthan, a stiff, water-soluble polysaccharide. At 2 mg/ml xanthan, the zero-shear viscosity of this medium is 1,000 times the viscosity of water, similar to cellular viscosity. To mimic the rheological drag force on the motors when attached to a vesicle in a cell, we attached a 2 μm bead to one end of the microtubule (MT). During gliding assays in our novel medium, the moving bead exerted a drag force of 4–15 pN on the kinesins pulling the MT. The velocity of MTs with an attached bead increased with MT length and with kinesin concentration. The increase with MT length arose because the number of motors is directly proportional to MT length. Our results show that small numbers of kinesins cooperate constructively when pulling against a viscoelastic drag. In the absence of a bead but still in the viscous medium, MT velocity was independent of MT length and kinesin concentration because the thin MT, like a snake moving through grass, was able to move between xanthan molecules with little resistance. A minimal shared-load model in which the number of motors is proportional to MT length fits the observed dependence of gliding velocity on MT length and kinesin concentration.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment