Nearly all aspects of nucleic acid metabolism involve motor proteins. This diverse group of enzymes, which includes DNA and RNA polymerases, the ribosome, helicases, and other translocases, converts chemical energy in the form of bond hydrolysis into concerted motion along nucleic acid filaments. The direct observation of this motion at its fundamental distance scale of one base pair has required the development of new ultrasensitive techniques. Recent advances in optical traps have now made these length scales, once the exclusive realm of crystallographic techniques, accessible. Several new studies using optical traps have revealed for the first time how motor proteins translocate along their substrates in a stepwise fashion. Though these techniques have only begun to be applied to biological problems, the unprecedented access into nucleic acid motor protein movement has already provided important insights into their mechanism. In this perspective, we review these advances and offer our view on the future of this exciting development.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Monday, March 29, 2010
Revealing the base pair stepping dynamics of nucleic acid motor proteins with optical traps
Yann R. Chemla
Nearly all aspects of nucleic acid metabolism involve motor proteins. This diverse group of enzymes, which includes DNA and RNA polymerases, the ribosome, helicases, and other translocases, converts chemical energy in the form of bond hydrolysis into concerted motion along nucleic acid filaments. The direct observation of this motion at its fundamental distance scale of one base pair has required the development of new ultrasensitive techniques. Recent advances in optical traps have now made these length scales, once the exclusive realm of crystallographic techniques, accessible. Several new studies using optical traps have revealed for the first time how motor proteins translocate along their substrates in a stepwise fashion. Though these techniques have only begun to be applied to biological problems, the unprecedented access into nucleic acid motor protein movement has already provided important insights into their mechanism. In this perspective, we review these advances and offer our view on the future of this exciting development.
Nearly all aspects of nucleic acid metabolism involve motor proteins. This diverse group of enzymes, which includes DNA and RNA polymerases, the ribosome, helicases, and other translocases, converts chemical energy in the form of bond hydrolysis into concerted motion along nucleic acid filaments. The direct observation of this motion at its fundamental distance scale of one base pair has required the development of new ultrasensitive techniques. Recent advances in optical traps have now made these length scales, once the exclusive realm of crystallographic techniques, accessible. Several new studies using optical traps have revealed for the first time how motor proteins translocate along their substrates in a stepwise fashion. Though these techniques have only begun to be applied to biological problems, the unprecedented access into nucleic acid motor protein movement has already provided important insights into their mechanism. In this perspective, we review these advances and offer our view on the future of this exciting development.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment