Raman confocal microscopy, combined with an optical stretcher, is used to study the spatial distribution and the oxidation state of hemoglobin in erythrocytes under stretching condition. In particular, a near infrared laser (λ = 1064 nm) is used to generate multiple time-sharing Optical Tweezers to trap and stretch a single erythrocyte, while a second laser (λ = 532 nm) acts as Raman probe. Our study demonstrates that stretching induces hemoglobin transition to the deoxygenated state. Moreover, by using Principal Component Analysis we prove the reversibility of the oxydeoxy hemoglobin transition after application of the optically induced mechanical stress.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Thursday, March 4, 2010
Experimental analysis of Hb oxy–deoxy transition in single optically stretched red blood cells
G. Rusciano
Raman confocal microscopy, combined with an optical stretcher, is used to study the spatial distribution and the oxidation state of hemoglobin in erythrocytes under stretching condition. In particular, a near infrared laser (λ = 1064 nm) is used to generate multiple time-sharing Optical Tweezers to trap and stretch a single erythrocyte, while a second laser (λ = 532 nm) acts as Raman probe. Our study demonstrates that stretching induces hemoglobin transition to the deoxygenated state. Moreover, by using Principal Component Analysis we prove the reversibility of the oxydeoxy hemoglobin transition after application of the optically induced mechanical stress.
Raman confocal microscopy, combined with an optical stretcher, is used to study the spatial distribution and the oxidation state of hemoglobin in erythrocytes under stretching condition. In particular, a near infrared laser (λ = 1064 nm) is used to generate multiple time-sharing Optical Tweezers to trap and stretch a single erythrocyte, while a second laser (λ = 532 nm) acts as Raman probe. Our study demonstrates that stretching induces hemoglobin transition to the deoxygenated state. Moreover, by using Principal Component Analysis we prove the reversibility of the oxydeoxy hemoglobin transition after application of the optically induced mechanical stress.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment