The trapping efficiency and stiffness of optical tweezers using radial polarization are evaluated; the ray-tracing method and a proposed measurement method are used for numerical and experimental analyses, respectively. The maximum axial trapping efficiency with radial polarization is 1.84 times that with linear polarization, while the maximum transverse trapping efficiency decreases by 0.58 times. Further, the axial and transverse trapping efficiencies are found to be 1.19 times larger and 0.83 times smaller, respectively, than the values with linear polarization. From the experiments, the axial and transverse stiffness values are 1.2 times larger and 0.8 times smaller, respectively, with radial polarization. Hence, radial polarization enhances the axial trapping properties while reducing the transverse trapping properties.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Monday, November 2, 2009
Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam
Masaki Michihata, Terutake Hayashi, and Yasuhiro Takaya
The trapping efficiency and stiffness of optical tweezers using radial polarization are evaluated; the ray-tracing method and a proposed measurement method are used for numerical and experimental analyses, respectively. The maximum axial trapping efficiency with radial polarization is 1.84 times that with linear polarization, while the maximum transverse trapping efficiency decreases by 0.58 times. Further, the axial and transverse trapping efficiencies are found to be 1.19 times larger and 0.83 times smaller, respectively, than the values with linear polarization. From the experiments, the axial and transverse stiffness values are 1.2 times larger and 0.8 times smaller, respectively, with radial polarization. Hence, radial polarization enhances the axial trapping properties while reducing the transverse trapping properties.
The trapping efficiency and stiffness of optical tweezers using radial polarization are evaluated; the ray-tracing method and a proposed measurement method are used for numerical and experimental analyses, respectively. The maximum axial trapping efficiency with radial polarization is 1.84 times that with linear polarization, while the maximum transverse trapping efficiency decreases by 0.58 times. Further, the axial and transverse trapping efficiencies are found to be 1.19 times larger and 0.83 times smaller, respectively, than the values with linear polarization. From the experiments, the axial and transverse stiffness values are 1.2 times larger and 0.8 times smaller, respectively, with radial polarization. Hence, radial polarization enhances the axial trapping properties while reducing the transverse trapping properties.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment