In this work, we combine the large per-photon optical gradient force with the sensitive feedback of a high quality factor whispering-gallery microcavity. The cavity geometry, consisting of a pair of silica disks separated by a nanoscale gap, shows extremely strong dynamical backaction, powerful enough to excite coherent oscillations even under heavily damped conditions (mechanical Q4). In vacuum, the threshold for regenerative mechanical oscillation is lowered to an optical input power of only 270 nW, or roughly 1000 stored cavity photons, and efficient cooling of the mechanical motion is obtained with a temperature compression factor of nearly 14 dB with an input optical power of only 11 µW.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Thursday, September 17, 2009
Mechanical Oscillation and Cooling Actuated by the Optical Gradient Force
Qiang Lin, Jessie Rosenberg, Xiaoshun Jiang, Kerry J. Vahala, and Oskar Painter
In this work, we combine the large per-photon optical gradient force with the sensitive feedback of a high quality factor whispering-gallery microcavity. The cavity geometry, consisting of a pair of silica disks separated by a nanoscale gap, shows extremely strong dynamical backaction, powerful enough to excite coherent oscillations even under heavily damped conditions (mechanical Q4). In vacuum, the threshold for regenerative mechanical oscillation is lowered to an optical input power of only 270 nW, or roughly 1000 stored cavity photons, and efficient cooling of the mechanical motion is obtained with a temperature compression factor of nearly 14 dB with an input optical power of only 11 µW.
In this work, we combine the large per-photon optical gradient force with the sensitive feedback of a high quality factor whispering-gallery microcavity. The cavity geometry, consisting of a pair of silica disks separated by a nanoscale gap, shows extremely strong dynamical backaction, powerful enough to excite coherent oscillations even under heavily damped conditions (mechanical Q4). In vacuum, the threshold for regenerative mechanical oscillation is lowered to an optical input power of only 270 nW, or roughly 1000 stored cavity photons, and efficient cooling of the mechanical motion is obtained with a temperature compression factor of nearly 14 dB with an input optical power of only 11 µW.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment