We have measured the entropic elasticity of double-stranded-DNA molecules ranging from 247 to 1298 bp in length using axial force-clamp optical tweezers. We show that entropic end effects and excluded-volume forces from surface attachments become significant for such short molecules. The effective persistence length of the shortest molecules decreases by a factor of 2 compared to the established value for long molecules, and excluded-volume forces extend the molecules to about one third of their nominal contour length. We interpret these results in the framework of an inextensible semiflexible rod model.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Friday, September 18, 2009
Entropic boundary effects on the elasticity of short DNA molecules
Yih-Fan Chen, David P. Wilson, Krishnan Raghunathan, and Jens-Christian Meiners
We have measured the entropic elasticity of double-stranded-DNA molecules ranging from 247 to 1298 bp in length using axial force-clamp optical tweezers. We show that entropic end effects and excluded-volume forces from surface attachments become significant for such short molecules. The effective persistence length of the shortest molecules decreases by a factor of 2 compared to the established value for long molecules, and excluded-volume forces extend the molecules to about one third of their nominal contour length. We interpret these results in the framework of an inextensible semiflexible rod model.
We have measured the entropic elasticity of double-stranded-DNA molecules ranging from 247 to 1298 bp in length using axial force-clamp optical tweezers. We show that entropic end effects and excluded-volume forces from surface attachments become significant for such short molecules. The effective persistence length of the shortest molecules decreases by a factor of 2 compared to the established value for long molecules, and excluded-volume forces extend the molecules to about one third of their nominal contour length. We interpret these results in the framework of an inextensible semiflexible rod model.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment