.

Monday, July 20, 2009

Extreme axial optical force in a standing wave achieved by optimized object shape

J. Trojek, V. Karásek, and P. Zemanek

Standing wave optical trapping offers many useful advantages in comparison to single beam trapping, especially for submicrometer size particles. It provides axial force stronger by several orders of magnitude, much higher axial trap stiffness, and spatial confinement of particles with higher refractive index. Mainly spherical particles are nowadays considered theoretically and trapped experimentally. In this paper we consider prolate objects of cylindrical symmetry with radius periodically modulated along the axial direction and we present a theoretical study of optimized objects shapes resulting in up to tenfold enhancement of the axial optical force in comparison with the original unmodulated object shape. We obtain analytical formulas for the axial optical force acting on low refractive index objects where the light scattering by the object is negligible. Numerical results based on the coupled dipole method are presented for objects with higher refractive indices and they support the previous simplified analytical conclusions.

No comments: