.

Thursday, June 25, 2009

Sequence-specific physical properties of African green monkey alpha-satellite DNA contribute to centromeric heterochromatin formation

Malte Bussiek, Christian Hoischen, Stephan Diekmann and Martin L. Bennink

Satellite DNA, a major component of eukaryotic centromeric heterochromatin, is potentially associated with the processes ensuring the faithful segregation of the genetic material during cell division. Structural properties of alpha-satellite DNA (AS) from African green monkey (AGM) were studied. Atomic force microscopy imaging showed smaller end-to-end distances of AS fragments than would be expected for the persistence length of random sequence DNA. The apparent persistence length of the AS was determined as 35 nm. Gel-electrophoresis indicated only a weak contribution of intrinsic curvature to the DNA conformations suggesting an additional contribution of an elevated bending flexibility to the reduced end-to-end distances. Next, the force-extension behavior of the naked AS and in complex with nucleosomes was studied using optical tweezers. The naked AS showed a reduced overstretching transition force (−18% the value determined for random DNA) and higher forces required to straighten the DNA. Finally, reconstituted AS nucleosomes disrupted at significantly higher forces as compared with random DNA nucleosomes which is probably due to structural properties of the AS which stabilize the nucleosomes. The data support that the AS plays a role in the formation of centromeric heterochromatin due to specific structural properties and suggest that a relatively higher mechanical stability of nucleosomes is important in AGM–AS chromatin.

No comments: