We investigate numerically and experimentally all-optical control of particles inside waterfilled, silica, hollow-core photonic crystal fiber (HC-PCF). We use an optical trapping beam focused outside the fiber, through its microstructure, perpendicular to the HC-PCF and independent of the guided fiber core mode. Finite difference time domain simulations model trapping through HC-PCF microstructure: trapping along the length of the HC-PCF is well maintained despite the significant effects due to scattering of the HC-PCF core structure. Trapped silica microspheres inside a HC-PCF is demonstrated experimentally as a reversible, reliable technique to control particles in fiber independent of the guided fiber mode. We observe a broadband attenuation of the HC-PCF transmission upon loading a silica microsphere into the fiber core.
DOI
No comments:
Post a Comment