The utilization of the enhanced local field near trapped metallic nanoparticles due to surface-plasmon resonance (SPR) for the optical trapping of dielectric fluorescent nano-objects is of considerable interest for single-molecule manipulation. Theoretical calculations as well as experimental measurements showed that even with moderate SPR based field enhancement factors, gradient force based trapping of fluorescent molecules would be rather difficult. While trapping of the fluorescent molecule at resonance wavelength showed decreased stiffness, at wavelengths far away from resonance, increase in stiffness was found which was attributed to interplay of SPR-enhanced absorption and gradient forces.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Wednesday, March 4, 2009
Surface-plasmon-resonance enhancement: effects on optical trapping and manipulation of nano-objects
Samarendra K. Mohanty, K. Divakar Rao, and Pradeep K. Gupta
The utilization of the enhanced local field near trapped metallic nanoparticles due to surface-plasmon resonance (SPR) for the optical trapping of dielectric fluorescent nano-objects is of considerable interest for single-molecule manipulation. Theoretical calculations as well as experimental measurements showed that even with moderate SPR based field enhancement factors, gradient force based trapping of fluorescent molecules would be rather difficult. While trapping of the fluorescent molecule at resonance wavelength showed decreased stiffness, at wavelengths far away from resonance, increase in stiffness was found which was attributed to interplay of SPR-enhanced absorption and gradient forces.
The utilization of the enhanced local field near trapped metallic nanoparticles due to surface-plasmon resonance (SPR) for the optical trapping of dielectric fluorescent nano-objects is of considerable interest for single-molecule manipulation. Theoretical calculations as well as experimental measurements showed that even with moderate SPR based field enhancement factors, gradient force based trapping of fluorescent molecules would be rather difficult. While trapping of the fluorescent molecule at resonance wavelength showed decreased stiffness, at wavelengths far away from resonance, increase in stiffness was found which was attributed to interplay of SPR-enhanced absorption and gradient forces.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment