Boundary walls in microfluidic devices have a strong influence on the fluid flow and drag forces on moving objects. The Stokes drag force acting on a sphere translating in the fluid is increased by the presence of a neighboring wall by a factor given by Faxén's correction. A similar increase in the rotational drag is expected when spinning close to a wall. We use optical tweezers to confirm the translational drag correction and report the hitherto unmeasured rotational equivalent. We findthat the corrections for the rotational motion is only required for particle-wall separations an order of magnitude shorter than that for the translational cases. These results are particularly significant in the use of optical tweezers for measuring viscosity on a picolitre scale.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Friday, March 13, 2009
Comparison of Faxén's correction for a microsphere translating or rotating near a surface
J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett
Boundary walls in microfluidic devices have a strong influence on the fluid flow and drag forces on moving objects. The Stokes drag force acting on a sphere translating in the fluid is increased by the presence of a neighboring wall by a factor given by Faxén's correction. A similar increase in the rotational drag is expected when spinning close to a wall. We use optical tweezers to confirm the translational drag correction and report the hitherto unmeasured rotational equivalent. We findthat the corrections for the rotational motion is only required for particle-wall separations an order of magnitude shorter than that for the translational cases. These results are particularly significant in the use of optical tweezers for measuring viscosity on a picolitre scale.
Boundary walls in microfluidic devices have a strong influence on the fluid flow and drag forces on moving objects. The Stokes drag force acting on a sphere translating in the fluid is increased by the presence of a neighboring wall by a factor given by Faxén's correction. A similar increase in the rotational drag is expected when spinning close to a wall. We use optical tweezers to confirm the translational drag correction and report the hitherto unmeasured rotational equivalent. We findthat the corrections for the rotational motion is only required for particle-wall separations an order of magnitude shorter than that for the translational cases. These results are particularly significant in the use of optical tweezers for measuring viscosity on a picolitre scale.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment