.

Wednesday, September 30, 2020

Laser Trapping of Circular Rydberg Atoms

R. G. Cortiñas, M. Favier, B. Ravon, P. Méhaignerie, Y. Machu, J. M. Raimond, C. Sayrin, and M. Brune

Rydberg atoms are remarkable tools for quantum simulation and computation. They are the focus of an intense experimental activity, mainly based on low-angular-momentum Rydberg states. Unfortunately, atomic motion and levels lifetime limit the experimental timescale to about 100  μs. Here, we demonstrate two-dimensional laser trapping of long-lived circular Rydberg states for up to 10 ms. Our method is very general and opens many opportunities for quantum technologies with Rydberg atoms. The 10 ms trapping time corresponds to thousands of interaction cycles in a circular-state-based quantum simulator. It is also promising for quantum metrology and quantum information with Rydberg atoms, by bringing atom-field interaction times into unprecedented regimes.

DOI

Optical Transport and Sorting of Fluorescent Nanodiamonds inside a Tapered Glass Capillary: Optical Sorting of Nanomaterials at the Femtonewton Scale

Christophe Pin, Ryohei Otsuka, and Keiji Sasaki

Nanoparticles from biological, environmental, or industrial sources always show some dispersion in size, shape, composition, and related physical or chemical properties. Sorting nanoparticles according to well-defined criteria is often a crucial but challenging task. While optical forces may be used to target some specific properties such as the size, shape, absorption wavelength, and chirality of nanoparticles, optical sorting techniques usually suffer from the fast diffusion of nanoparticles in comparison to the relative weakness of the optical forces acting on dielectric nanomaterials in liquid dispersion. To achieve high-efficiency optical sorting of an ensemble of nanoparticles in colloidal dispersion, all the nanoparticles to be sorted should be gathered and kept in the light path for a sufficient time. For this purpose, we investigate the use of tapered glass capillaries as optofluidic platforms for optical manipulation and optical sorting applications. While the transparent pipe-like structure of the capillary serves as an optical waveguide that focuses the laser light over a few-millimeter-long distance, the inner part of the capillary forms a microfluidic channel that is filled with a water dispersion of 100 nm fluorescent nanodiamonds (NDs). We first demonstrate power-dependent optical transport of NDs inside few-micrometer-large capillaries. It is observed that NDs located inside the waist of the tapered capillary can be optically propelled at velocities reaching few tens of micrometer per second. We then show how a liquid flow inside the channel enables efficient, size-dependent sorting of a large ensemble of NDs. An analytical model is used to evaluate the influence of the NDs’ size on the optical and hydrodynamic drag forces acting on the nanoparticles, both being in the femtonewton range.

DOI

Probing optical mode hybridization in an integrated graphene nano-optomechanical system

Aneesh Dash, S. K. Selvaraja, and A. K. Naik

We propose a scheme for sensitive local monitoring of mode hybridization in vertically asymmetric waveguides with a nano-optomechanical probe based on graphene. Extracting local information about mode hybridization is challenging using intensity measurements at the output or scanning optical probes over the waveguide. Transferring the information about the guided field profiles into the mechanical mode of graphene (with ultra-low-force sensitivity) using the optical gradient force allows for sensitive probing of the mode hybridization. In our proposed scheme, we estimate that a 100% change in the TE fraction of the fundamental quasi-TM waveguide mode would cause a change in the vibration amplitude of graphene on the order of 1000 pm. The limit of detection of the TE fraction is approximately 0.001. The change in the TE fraction due to index perturbations in the core and cladding can also be used for index sensing with responsivity on the order of 1000 pm change in vibration amplitude per refractive index unit and a limit of detection of 2×10−4 refractive index units. This work provides novel methods for applications in optomechanical modulation and sensing.

DOI

Experimental and theoretical energetics of walking molecular motors under fluctuating environments

Takayuki Ariga, Michio Tomishige & Daisuke Mizuno

Molecular motors are nonequilibrium open systems that convert chemical energy to mechanical work. Their energetics are essential for various dynamic processes in cells, but largely remain unknown because fluctuations typically arising in small systems prevent investigation of the nonequilibrium behavior of the motors in terms of thermodynamics. Recently, Harada and Sasa proposed a novel equality to measure the dissipation of nonequilibrium small systems. By utilizing this equality, we have investigated the nonequilibrium energetics of the single-molecule walking motor kinesin-1. The dissipation from kinesin movement was measured through the motion of an attached probe particle and its response to external forces, indicating that large hidden dissipation exists. In this short review, aiming to readers who are not familiar with nonequilibrium physics, we briefly introduce the theoretical basis of the dissipation measurement as well as our recent experimental results and mathematical model analysis and discuss the physiological implications of the hidden dissipation in kinesin. In addition, further perspectives on the efficiency of motors are added by considering their actual working environment: living cells.

DOI

Subwavelength optical trapping and transporting using a Bloch mode

Lin Wang, Yongyin Cao, Bojian Shi, Hang Li, Rui Feng, Fangkui Sun, Lih Y. Lin, and Weiqiang Ding

Multi-functional optical manipulations, including optical trapping and transporting of subwavelength particles, are proposed using the Bloch modes in a dielectric photonic structure. We show that the Bloch modes in a periodic structure can generate a series of subwavelength trapping wells that are addressable by tuning the incident wavelength. This feature enables efficient optical trapping and transportation in a peristaltic way. Since we are using the guiding Bloch mode in a dielectric structure, rather than using plasmonic or dielectric resonant cavities, these operations are wide band and free from joule loss. The Bloch mode in a simple periodic dielectric structure provides a new platform for multi-functional optical operations and may find potential applications in nanophotonics and biomedicine.

DOI

Monday, September 21, 2020

Optimization of nonlinear optical tweezers suitable to stretch DNA molecules without broken state

Quy Ho Quang, Thanh Thai Doan, Tuan Doan Quoc, Le Ly Nguyen & Thang Nguyen Manh

The positioning of the trapped bead and DNA’s stretching dynamics in the nonlinear optical tweezers are numerically simulated by finite difference method using general Langevin. From the performance of longitudinal position-pulling time curves of bead and evolution of forces controlled by average laser power, the trapping time, possible maximum stretched length, and laser intensity threshold of to broken DNA molecule are found. We also discussed the suitable conditions to avoid broken and overstretched states for longitudinally optical stretched DNA molecule. Finally, the optimized configuration of NOT for DNA molecules having different contour lengths is proposed.

DOI

Spin momentum-dependent orbital motion

Shaohui Yan, Manman Li, Yansheng Liang, Yanan Cai and Baoli Yao

We present a theoretic analysis on (azimuthal) spin momentum-dependent orbital motion experienced by particles in a circularly-polarized annular focused field. Unlike vortex phase-relevant (azimuthal) orbital momentum flow whose direction is specified by the sign of topological charge, the direction of (azimuthal) spin momentum flow is determined by the product of the field's polarization ellipticity and radial derivative of field intensity. For an annular focused field with a definite polarization ellipticity, the intensity's radial derivative has opposite signs on two sides of the central ring (intensity maximum), causing the spin momentum flow to reverse its direction when crossing the central ring. When placed in such a spin momentum flow, a probe particle is expected to response to this flow configuration by changing the direction of orbital motion as it traversing from one side to the other. The reversal of the particle's orbital motion is a clear sign that spin momentum flow can affect particles' orbital motion alone even without orbital momentum flow. More interestingly, for dielectric particles the spin momentum-dependent orbital motion tends to be 'negative', i.e., in the opposite direction of the spin momentum flow. This arises mainly because of spin–orbit interaction during the scattering process. For the purpose of experimental observation, we suggest the introduction of an auxiliary radially-polarized illumination to adjust the particle's radial equilibrium position, for the radial gradient force of the circularly-polarized annular focused field tends to constrain the particle at the ring of intensity maximum.

DOI

Formation of pre-pore complexes of pneumolysin is accompanied by a decrease in short-range order of lipid molecules throughout vesicle bilayers

Bayan H. A. Faraj, Liam Collard, Rachel Cliffe, Leanne A. Blount, Rana Lonnen, Russell Wallis, Peter W. Andrew & Andrew J. Hudson

Oligomers of pneumolysin form transmembrane channels in cholesterol-containing lipid bilayers. The mechanism of pore formation involves a multistage process in which the protein, at first, assembles into a ring-shaped complex on the outer-bilayer leaflet. In a subsequent step, the complex inserts into the membrane. Contrary to most investigations of pore formation that have focussed on protein changes, we have deduced how the lipid-packing order is altered in different stages of the pore-forming mechanism. An optical tweezing apparatus was used, in combination with microfluidics, to isolate large-unilamellar vesicles and control exposure of the bilayer to pneumolysin. By monitoring Raman-scattered light from a single-trapped liposome, the effect of the protein on short-range order and rotational diffusion of lipids could be inferred from changes in the envelope of the C–H stretch. A significant change in the lipid-packing order takes place during assembly of pre-pore oligomers. We were not able to detect a change in the lipid-packing order during the initial stage of protein binding, or any further change during the insertion of oligomers. Pre-pore complexes induce a transformation in which a bilayer, resembling a liquid-ordered phase is changed into a bilayer resembling a fluid-liquid-disordered phase surrounding ordered microdomains enriched in cholesterol and protein complexes.

DOI

Brownian fluctuations and hydrodynamics of a microhelix near a solid wall

Silvio Bianchi, Viridiana Carmona Sosa, Gaszton Vizsnyiczai & Roberto Di Leonardo

We combine two-photon lithography and optical tweezers to investigate the Brownian fluctuations and propeller characteristics of a microfabricated helix. From the analysis of mean squared displacements and time correlation functions we recover the components of the full mobility tensor. We find that Brownian motion displays correlations between angular and translational fluctuations from which we can directly measure the hydrodynamic coupling coefficient that is responsible for thrust generation. By varying the distance of the microhelices from a no-slip boundary we can systematically measure the effects of a nearby wall on the resistance matrix. Our results indicate that a rotated helix moves faster when a nearby no-slip boundary is present, providing a quantitative insight on thrust enhancement in confined geometries for both synthetic and biological microswimmers.

DOI

Measuring Stepwise Binding of Thermally Fluctuating Particles to Cell Membranes without Fluorescence

Alexander Rohrbach, Tim Meyer, Ernst H.K. Stelzer, Holger Kress

Thermal motions enable a particle to probe the optimal interaction state when binding to a cell membrane. However, especially on the scale of microseconds and nanometers, position and orientation fluctuations are difficult to observe with common measurement technologies. Here, we show that it is possible to detect single binding events of immunoglobulin-G-coated polystyrene beads, which are held in an optical trap near the cell membrane of a macrophage. Changes in the spatial and temporal thermal fluctuations of the particle were measured interferometrically, and no fluorophore labeling was required. We demonstrate both by Brownian dynamic simulations and by experiments that sequential stepwise increases in the force constant of the bond between a bead and a cell of typically 20 pN/μm are clearly detectable. In addition, this technique provides estimates about binding rates and diffusion constants of membrane receptors. The simple approach of thermal noise tracking points out new strategies in understanding interactions between cells and particles, which are relevant for a large variety of processes, including phagocytosis, drug delivery, and the effects of small microplastics and particulates on cells.

DOI

Wednesday, September 16, 2020

Efficiencies of molecular motors: a comprehensible overview

Chun-Biu Li & Shoichi Toyabe

Many biological molecular motors can operate specifically and robustly at the highly fluctuating nano-scale. How these molecules achieve such remarkable functions is an intriguing question that requires various notions and quantifications of efficiency associated with the operations and energy transduction of these nano-machines. Here we give a short review of some important concepts of motor efficiencies, including the thermodynamic, Stokes, and generalized and transport efficiencies, as well as some implications provided by the thermodynamic uncertainty relations recently developed in nonequilibrium physics.

DOI

Improving Flow Bead Assay: Combination of Near-Infrared Optical Tweezers Stabilizing and Upconversion Luminescence Encoding

Bei Zheng, Ya-Feng Kang, Ting Zhang, Cheng-Yu Li, Sha Huang, Zhi-Ling Zhang, Qiong-Shui Wu, Chu-Bo Qi, Dai-Wen Pang, and Hong-Wu Tang

To enhance signal acquisition stability and diminish background interference for conventional flow bead-based fluorescence detection methods, we demonstrate here an exceptional microfluidic chip assisted platform by integrating near-infrared optical tweezers with upconversion luminescence encoding. For the former, a single 980 nm laser is employed to perform optical trapping and concurrently excite upconversion luminescence, avoiding the fluctuation of the signals and the complexity of the apparatus. By virtue of the favorable optical properties of upconversion nanoparticles (UCNPs), the latter is carried out by employing two-color UCNPs (Er-UCNPs and Tm-UCNPs) with negligible spectral overlaps. With the assistance of the double key techniques, we fabricated complex microbeads referred to a UCNPs–miRNAs–microbead sandwich construct by a one-step nucleic acid hybridization process and then obtained uniform terrace peaks for the automatic and simultaneous quantitative determination of miRNA-205 and miRNA-21 sequences with a detection limit of pM level on the basis of a special home-built flow bead platform. Furthermore, the technique was successfully applied for analyzing complex biological samples such as cell lysates and human tissue lysates, holding certain potential for disease diagnosis. In addition, it is expected that the flow platform can be utilized to investigate many other biomolecules of single cells and to allow analysis of particle heterogeneity in biological fluid by means of optical tweezers.

DOI

Realization of finite-rate isothermal compression and expansion using optical feedback trap

John A. C. Albay, Pik-Yin Lai, and Yonggun Jun

We experimentally realize the finite-rate isothermal process of a Brownian particle in a breathing harmonic potential. For the compression process, finite-rate equilibration can be achieved by increasing and then decreasing the stiffness of the potential to the final stiffness according to the shortcuts-to-isothermal (ScI) protocol. On the other hand, the realization of the ScI expansion is experimentally impossible with optical tweezers due to the requirement of a negative stiffness. Here, we propose a simple and elegant method to resolve this problem and demonstrate the ScI expansion by using the optical feedback trap capable of creating an arbitrary spatiotemporal potential even with a negative stiffness. In addition, we check the thermodynamic energetics such as work, heat, and internal energy, which indeed obey stochastic thermodynamics. Our method provides the possibility of a Brownian heat engine with maximum efficiency but non-vanishing power.

DOI

Method of optical manipulation of gold nanoparticles for surface-enhanced Raman scattering in a microcavity

Kun Xin, Xiaofeng Shi, Yi Liu, Zimeng Zhang, Wenjie Jia, and Jun Ma

In this study, an optical manipulation and micro-surface-enhanced Raman scattering (microSERS) setup based on a microcavity was developed for efficient capture of gold nanoparticles using the photothermal effect. In addition, optical manipulation of gold nanoparticles and SERS signal detection were performed using only one laser. The results show that the SERS enhancement effect based on the microcavity was more than 20 times that based on a gold colloid solution. The laser power and velocity of nanoparticles exhibited a good linear relationship, and the velocity of nanoparticles decreased with decreasing radius r, which verifies the detriment of the radial thermophoresis in this study. This method can be used to quickly and efficiently drive metal nanoparticles and provides a promising approach for analysis of substances in the fields of chemistry and biology.

DOI

Diffraction-limited axial double foci and optical traps generated by optimization-free planar lens

Long Ma, Jian Guan, Yiqun Wang, Chen Chen, Jianlong Zhang, Jie Lin, Jiubin Tan and Peng Jin

Axial diffraction-limited multiple foci are a kind of investigated focal field for trapping multiple nano-particles. We first experimentally generated diffraction-limited axial double foci by optimization-free binary planar lens and theoretically demonstrated it, which can be applied in multi-particle trapping. The proposed binary planar lens was analytically designed. The BPL has a numerical aperture of 0.9 and a focal length of 150 μm. The focal field of the binary planar lens, which is composed of diffraction-limited axial double foci, was first experimentally validated. The measured maximum lateral full widths at half maximum of the two generated focal spots were diffraction-limited and consistent with the theoretical. The axial double foci formed two stable optical traps that can trap two Rayleigh dielectric particles simultaneously. The radial, azimuthal and axial optical forces of the double optical traps are in good uniformity, which are 0.98, 0.99 and 0.96, respectively.

DOI

Tuesday, September 15, 2020

Combined Morpho-Chemical Profiling of Individual Extracellular Vesicles and Functional Nanoparticles without Labels

Yichuan Dai, Suwen Bai, Chuanzhen Hu, Kaiqin Chu, Bing Shen, and Zachary J. Smith

Biological nanoparticles are important targets of study, yet their small size and tendency to aggregate makes their heterogeneity difficult to profile on a truly single-particle basis. Here we present a label-free system called ‘Raman-enabled nanoparticle trapping analysis’ (R-NTA) that optically traps individual nanoparticles, records Raman spectra and tracks particle motion to identify chemical composition, size, and refractive index. R-NTA has the unique capacity to characterize aggregation status and absolute chemical concentration at the single-particle level. We validate the method on NIST standards and liposomes, demonstrating that R-NTA can accurately characterize size and chemical heterogeneity, including determining combined morpho-chemical properties such as the number of lamellae in individual liposomes. Applied to extracellular vesicles (EVs), we find distinct differences between EVs from cancerous and noncancerous cells, and that knockdown of the TRPP2 ion channel, which is pathologically highly expressed in laryngeal cancer cells, leads the EVs to more closely resemble EVs from normal epithelial cells. Intriguingly, the differences in EV content are found in small subpopulations of EVs, highlighting the importance of single-particle measurements. These experiments demonstrate the power of the R-NTA system to measure and characterize the morpho-chemical heterogeneity of bionanoparticles.

DOI

Digital Microfluidics for Single Bacteria Capture and Selective Retrieval Using Optical Tweezers

Phalguni Tewari Kumar, Deborah Decrop, Saba Safdar, Ioannis Passaris, Tadej Kokalj, Robert Puers, Abram Aertsen, Dragana Spasic, and Jeroen Lammertyn

When screening microbial populations or consortia for interesting cells, their selective retrieval for further study can be of great interest. To this end, traditional fluorescence activated cell sorting (FACS) and optical tweezers (OT) enabled methods have typically been used. However, the former, although allowing cell sorting, fails to track dynamic cell behavior, while the latter has been limited to complex channel-based microfluidic platforms. In this study, digital microfluidics (DMF) was integrated with OT for selective trapping, relocation, and further proliferation of single bacterial cells, while offering continuous imaging of cells to evaluate dynamic cell behavior. To enable this, magnetic beads coated with Salmonella Typhimurium-targeting antibodies were seeded in the microwell array of the DMF platform, and used to capture single cells of a fluorescent S. Typhimurium population. Next, OT were used to select a bead with a bacterium of interest, based on its fluorescent expression, and to relocate this bead to a different microwell on the same or different array. Using an agar patch affixed on top, the relocated bacterium was subsequently allowed to proliferate. Our OT-integrated DMF platform thus successfully enabled selective trapping, retrieval, relocation, and proliferation of bacteria of interest at single-cell level, thereby enabling their downstream analysis.

DOI

Fundamental investigation of photoacoustic signal generation from single aerosol particles at varying relative humidity

Matus E. Diveky, Sandra Roy, Grégory David, Johannes W. Cremer, Ruth Signorell

Photoacoustic (PA) spectroscopy enjoys widespread applications across atmospheric sciences. However, experimental biases and limitations originating from environmental conditions and particle size distributions are not fully understood. Here, we combine single-particle photoacoustics with modulated Mie scattering to unravel the fundamental physical processes occurring during PA measurements on aerosols. We perform measurements on optically trapped droplets of varying sizes at different relative humidity. Our recently developed technique – photothermal single-particle spectroscopy (PSPS) – enables fundamental investigations of the interplay between the heat flux and mass flux from single aerosol particles. We find that the PA phase is more sensitive to water uptake by aerosol particles than the PA amplitude. We present results from a model of the PA phase, which sheds further light onto the dependence of the PA phase on the mass flux phenomena. The presented work provides fundamental insights into photoacoustic signal generation of aerosol particles.

DOI

Controlled Optofluidic Crystallization of Colloids Tethered at Interfaces

Alessio Caciagli, Rajesh Singh, Darshana Joshi, R. Adhikari, and Erika Eiser

We report experiments that show rapid crystallization of colloids tethered to an oil-water interface in response to laser illumination. This light-induced transition is due to a combination of long-ranged thermophoretic pumping and local optical binding. We show that the flow-induced force on the colloids can be described as the gradient of a potential. The nonequilibrium steady state due to local heating thus admits an effective equilibrium description. The optofluidic manipulation explored in this work opens novel ways to manipulate and assemble colloidal particles.

DOI

Casimir spring and dilution in macroscopic cavity optomechanics

J. M. Pate, M. Goryachev, R. Y. Chiao, J. E. Sharping & M. E. Tobar

The Casimir force was predicted in 1948 as a force arising between macroscopic bodies from the zero-point energy. At finite temperatures, it has been shown that a thermal Casimir force exists due to thermal rather than zero-point energy and there are a growing number of experiments that characterize the effect at a range of temperatures and distances. In addition, in the rapidly evolving field of cavity optomechanics, there is an endeavour to manipulate phonons and enhance coherence. We demonstrate a way to realize a Casimir spring and engineer dilution in macroscopic optomechanics, by coupling a metallic SiN membrane to a photonic re-entrant cavity. The attraction of the spatially localized Casimir spring mimics a non-contacting boundary condition, giving rise to increased strain and acoustic coherence through dissipation dilution. This provides a way to manipulate phonons via thermal photons leading to ‘in situ’ reconfigurable mechanical states, to reduce loss mechanisms and to create additional types of acoustic nonlinearity—all at room temperature.

DOI

Thursday, September 10, 2020

Determinants for Fusion Speed of Biomolecular Droplets

Dr. Archishman Ghosh Prof. Huan‐Xiang Zhou

Biomolecular droplets formed through phase separation have a tendency to fuse. The speed with which fusion occurs is a direct indicator of condensate liquidity, which is key to both cellular functions and diseases. Using a dual‐trap optical tweezers setup, we found the fusion speeds of four types of droplets to differ by two orders of magnitude. The order of fusion speed correlates with the fluorescence of thioflavin T, which in turn reflects the macromolecular packing density inside droplets. Unstructured protein or polymer chains pack loosely and readily rearrange, leading to fast fusion. In contrast, structured protein domains pack more closely and have to break extensive contacts before rearrangement, corresponding to slower fusion. This molecular interpretation for disparate fusion speeds provides mechanistic insight into the assembly and aging of biomolecular droplets.

DOI

Optical trapping of single nano-size particles using a plasmonic nanocavity

Jiachen Zhang, Fanfan Lu, Wending Zhang, Weixing Yu, Weiren Zhu, Malin Premaratne, Ting Mei, Fajun Xiao and Jianlin Zhao

Trapping and manipulating micro-size particles using optical tweezers has contributed to many breakthroughs in biology, materials science, and colloidal physics. However, it remains challenging to extend this technique to a few nanometers particles owing to the diffraction limit and the considerable Brownian motion of trapped nanoparticles. In this work, a nanometric optical tweezer is proposed by using a plasmonic nanocavity composed of the closely spaced silver coated fiber tip and gold film. It is found that the radial vector mode can produce a nano-sized near field with the electric-field intensity enhancement factor over 103 through exciting the plasmon gap mode in the nanocavity. By employing the Maxwell stress tensor formalism, we theoretically demonstrate that this nano-sized near field results in a sharp quasi-harmonic potential well, capable of stably trapping 2 nm quantum dots beneath the tip apex with the laser power as low as 3.7 mW. Further analysis reveals that our nanotweezers can stably work in a wide range of particle-to-tip distances, gap sizes, and operation wavelengths. We envision that our proposed nanometric optical tweezers could be compatible with the tip-enhanced Raman spectroscopy to allow simultaneously manipulating and characterizing single nanoparticles as well as nanoparticle interactions with high sensitivity.

DOI

Multipole interplay controls optical forces and ultra-directional scattering

Andrei Kiselev, Karim Achouri, and Olivier J. F. Martin

We analyze the superposition of Cartesian multipoles to reveal the mechanisms underlying the origin of optical forces. We show that a multipolar decomposition approach significantly simplifies the analysis of this problem and leads to a very intuitive explanation of optical forces based on the interference between multipoles. We provide an in-depth analysis of the radiation coming from the object, starting from low-order multipole interactions up to quadrupolar terms. Interestingly, by varying the phase difference between multipoles, the optical force as well as the total radiation directivity can be well controlled. The theory developed in this paper may also serve as a reference for ultra-directional light steering applications.

DOI

Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping

Domna G. Kotsifaki, Viet Giang Truong, and Síle Nic Chormaic

Plasmonic nanostructures overcome Abbe’s diffraction limit to create strong gradient electric fields, enabling efficient optical trapping of nanoparticles. However, it remains challenging to achieve stable trapping with low incident laser intensity. Here, we demonstrate Fano resonance-assisted plasmonic optical tweezers for single nanoparticle trapping in an array of asymmetrical split nanoapertures on a 50 nm gold thin film. A large normalized trap stiffness of 8.65 fN/nm/mW for 20 nm polystyrene particles at a near-resonance trapping wavelength of 930 nm was achieved. The trap stiffness on-resonance is enhanced by a factor of 63 compared to that of off-resonance due to the ultrasmall mode volume, enabling large near-field strengths and a cavity effect contribution. These results facilitate trapping with low incident laser intensity, thereby providing new options for studying transition paths of single molecules such as proteins.

DOI

Enantioselective optical trapping of chiral nanoparticles using a transverse optical needle field with a transverse spin

Ying Li, Guanghao Rui, Sichao Zhou, Bing Gu, Yanzhong Yu, Yiping Cui, and Qiwen Zhan

Since the fundamental building blocks of life are built of chiral amino acids and chiral sugar, enantiomer separation is of great interest in plenty of chemical syntheses. Light-chiral material interaction leads to a unique chiral optical force, which possesses opposite directions for specimens with different handedness. However, usually the enantioselective sorting is challenging in optical tweezers due to the dominating achiral force. In this work, we propose an optical technique to sort chiral specimens by use of a transverse optical needle field with a transverse spin (TONFTS), which is constructed through reversing the radiation patterns from an array of paired orthogonal electric dipoles located in the focal plane of a 4Pi microscopy and experimentally generated with a home-built vectorial optical field generator. It is demonstrated that the transverse component of the photonic spin gives rise to the chiral optical force perpendicular to the direction of the light’s propagation, while the transverse achiral gradient force would be dramatically diminished by the uniform intensity profile of the optical needle field. Consequently, chiral nanoparticles with different handedness would be laterally sorted by the TONFTS and trapped at different locations along the optical needle field, providing a feasible route toward all-optical enantiopure chemical syntheses and enantiomer separations in pharmaceuticals.

DOI

Wednesday, September 9, 2020

Microspheres with Atomic-Scale Tolerances Generate Hyperdegeneracy

Jacob Kher-Alden, Shai Maayani, Leopoldo L. Martin, Mark Douvidzon, Lev Deych, and Tal Carmon

Degeneracies play a crucial rule in precise scientific measurements as well as in sensing applications. Spherical resonators have a high degree of degeneracy thanks to their highest symmetry; yet, fabricating perfect spheres is challenging because even a stem to hold the sphere breaks the symmetry. Here we fabricate a levitating spherical resonator that is evanescently coupled to a standard optical fiber. We characterize the resonators to exhibit an optical quality factor exceeding a billion, 10 μm radius, and sphericity to within less than 1 Å. Using our high quality and sphericity, we experimentally lift degeneracies of orders higher than 200, which we resolve with optical finesse exceeding 10 000 000. We then present our experimentally measured degenerate modes as well as their density of states next to our corresponding theoretical calculation. Our contactless photonic resonator is compatible with standard telecom fiber technology, exhibits the highest resonance enhancement as defined by (quality factor)/(mode volume), and the modes populating our cavity show the highest order of degeneracy reported in any system ever studied. This is in comparison with other settings that typically utilize the lowest-order twofold degeneracy.

DOI

Probing the optical chiral response of single nanoparticles with optical tweezers

Rfaqat Ali, F. A. Pinheiro, R. S. Dutra, F. S. S. Rosa, and P. A. Maia Neto

We propose an enantioselective scheme to sort homogeneous chiral particles using optical tweezers. For a certain range of material parameters, we show that a highly focused circularly polarized laser beam traps particles of a specific chirality selected by the handedness of the trapping beam. Furthermore, by applying a transverse Stokes drag force that displaces the trapped particle off-axis, we allow for the rotation of the particle center-of-mass around the trapping beam axis. The rotation angle is highly dependent on the handedness of the trapped particle and is easily measurable with standard video-microscopy techniques, allowing for an alternative mechanism for chiral resolution. Our platform not only allows for enantio selection of particles dispersed in solution but also paves the way to characterization of the chiral parameter of individual, homogeneous chiral microspheres using optical tweezing.

DOI

All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers

Teanchai Chantakit, Christian Schlickriede, Basudeb Sain, Fabian Meyer, Thomas Weiss, Nattaporn Chattham, and Thomas Zentgraf

Dynamic control of compact chip-scale contactless manipulation of particles for bioscience applications remains a challenging endeavor, which is restrained by the balance between trapping efficiency and scalable apparatus. Metasurfaces offer the implementation of feasible optical tweezers on a planar platform for shaping the exerted optical force by a microscale-integrated device. Here we design and experimentally demonstrate a highly efficient silicon-based metalens for two-dimensional optical trapping in the near-infrared. Our metalens concept is based on the Pancharatnam–Berry phase, which enables the device for polarization-sensitive particle manipulation. Our optical trapping setup is capable of adjusting the position of both the metasurface lens and the particle chamber freely in three directions, which offers great freedom for optical trap adjustment and alignment. Two-dimensional (2D) particle manipulation is done with a relatively low-numerical-aperture metalens (NAML=0.6). We experimentally demonstrate both 2D polarization-sensitive drag and drop manipulation of polystyrene particles suspended in water and transfer of angular orbital momentum to these particles with a single tailored beam. Our work may open new possibilities for lab-on-a-chip optical trapping for bioscience applications and microscale to nanoscale optical tweezers.

DOI

Single-Molecule Plasmonic Optical Trapping

Chao Zhan, Gan Wang, Jun Yi, Jun-Ying Wei, Zhi-Hao Li, Zhao-Bin Chen, Jia Shi, Yang Yang, Wenjing Hong, Zhong-Qun Tian

The volume of the object that can be manipulated in solution is continuously decreasing toward an ultimate goal of a single molecule. However, Brownian motions suppress the molecular trapping. To date, free-molecule trapping in solution has not been accomplished. Here, we develop a strategy to directly trap, investigate, and release single molecules (∼2 nm) in solution by using an adjustable plasmonic optical nanogap, which has been further applied for selective single-molecule trapping. Comprehensive experiments and theoretical simulations demonstrated that the trapping force originated from plasmonic nanomaterials. This technique opens an avenue to manipulate single molecules and other objects in the size range of primary interest for physics, chemistry, and life and material sciences without the limitations of strong bonding group, ultra-high vacuum, and ultra-low temperature, and makes possible controllable single-molecule manipulation and investigation as well as bottom-up construction of nanodevices and molecular machines.

DOI

Observation of Collisions between Two Ultracold Ground-State CaF Molecules

Lawrence W. Cheuk, Loïc Anderegg, Yicheng Bao, Sean Burchesky, Scarlett S. Yu, Wolfgang Ketterle, Kang-Kuen Ni, and John M. Doyle

We measure inelastic collisions between ultracold CaF molecules by combining two optical tweezers, each containing a single molecule. We observe collisions between 2Σ CaF molecules in the absolute ground state |X,v=0,N=0,F=0⟩, and in excited hyperfine and rotational states. In the absolute ground state, we find a two-body loss rate of 7(4)×10−11  cm3/s, which is below, but close to, the predicted universal loss rate.

DOI

Tuesday, September 8, 2020

Spheroidal trap shell beyond diffraction limit induced by nonlinear effects in femtosecond laser trapping

Lu Huang, Yaqiang Qin, Yunfeng Jin, Hao Shi, Honglian Guo, Liantuan Xiao and Yuqiang Jiang

Beyond diffraction limit, multitrapping of nanoparticles is important in numerous scientific fields, including biophysics, materials science and quantum optics. Here, we demonstrate the 3-dimensional (3D) shell-like structure of optical trapping well induced by nonlinear optical effects in the femtosecond Gaussian beam trapping for the first time. Under the joint action of gradient force, scattering force and nonlinear trapping force, the gold nanoparticles can be stably trapped in some special positions, or hop between the trap positions along a route within the 3D shell. The separation between the trap positions can be adjusted by laser power and numerical aperture (NA) of the trapping objective lens. With a high NA lens, we achieved dual traps with less than 100 nm separation without utilizing complicated optical systems or any on-chip nanostructures. These curious findings will greatly extend and deepen our understanding of optical trapping based on nonlinear interaction and generate novel applications in various fields, such as microfabrication/nanofabrication, sensing and novel micromanipulations.

DOI

Distributed Force Control for Microrobot Manipulation via Planar Multi‐Spot Optical Tweezer

Dandan Zhang Antoine Barbot Benny Lo Guang‐Zhong Yang

Optical tweezers (OT) represent a versatile tool for micro‐manipulation. To avoid damages to living cells caused by illuminating laser directly on them, microrobots controlled by OT can be used for manipulation of cells or living organisms in microscopic scale. Translation and planar rotation motion of microrobots can be realized by using a multi‐spot planar OT. However, out‐of‐plane manipulation of microrobots is difficult to achieve with a planar OT. This paper presents a distributed manipulation scheme based on multiple laser spots, which can control the out‐of‐plane pose of a microrobot along multiple axes. Different microrobot designs have been investigated and fabricated for experimental validation. The main contributions of this paper include: i) development of a generic model for the structure design of microrobots which enables multi‐dimensional (6D) control via conventional multi‐spot OT; ii) introduction of the distributed force control for microrobot manipulation based on characteristic distance and power intensity distribution. Experiments are performed to demonstrate the effectiveness of the proposed method and its potential applications, which include indirect manipulation of micro‐objects.

DOI

Evanescent Wave Optical Trapping and Sensing on Polymer Optical Fibers for Ultra-Trace Detection of Glucose

Tahereh Azargoshasb, H. Ali Navid, Roghaieh Parvizi, and Hadi Heidari

Graphene sensitization of glucose-imprinted polymer (G-IP)-coated optical fiber has been introduced as a new biosensor for evanescent wave trapping on the polymer optical fiber to detect low-level glucose. The developed sensor operates based on the evanescent wave modulation principle. Full characterization via atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and N2 adsorption/desorption of as-prepared G-IP-coated optical fibers was experimentally tested. Accordingly, related operational parameters such as roughness and diameter were optimized. Incorporating graphene into the G-IP not only steadily promotes the electron transport between the fiber surface and as-proposed G-IP but also significantly enhances the sensitivity by acting as a carrier for immobilizing G-IP with specific imprinted cavities. The sensor demonstrates a fast response time (5 s) and high sensitivity, selectivity, and stability, which cause a wide linear range (10–100 nM) and a low limit of detection (LOD = 2.54 nM). Experimental results indicate that the developed sensor facilitates online monitoring and remote sensing of glucose in biological liquids and food samples.

DOI

Measurement and simulation of atomic motion in nanoscale optical trapping potentials

Signe B. Markussen, Jürgen Appel, Christoffer Østfeldt, Jean-Baptiste S. Béguin, Eugene S. Polzik & Jörg H. Müller

Atoms trapped in the evanescent field around a nanofiber experience strong coupling to the light guided in the fiber mode. However, due to the intrinsically strong positional dependence of the coupling, thermal motion of the ensemble limits the use of nanofiber trapped atoms for some quantum tasks. We investigate the thermal dynamics of such an ensemble using short light pulses to make a spatially inhomogeneous population transfer between atomic states. As we monitor the wave packet of atoms created by this scheme, we find a damped oscillatory behavior which we attribute to sloshing and dispersion of the atoms. Oscillation frequencies range around 100 kHz, and motional dephasing between atoms happens on a timescale of 10μs. Comparison to Monte Carlo simulations of an ensemble of 1000 classical particles yields reasonable agreement for simulated ensemble temperatures between 25 and 40μK.

DOI

Single-Molecule Studies of Protein Folding with Optical Tweezers

Carlos Bustamante, Lisa Alexander, Kevin Maciuba, and Christian M. Kaiser

Manipulation of individual molecules with optical tweezers provides a powerful means of interrogating the structure and folding of proteins. Mechanical force is not only a relevant quantity in cellular protein folding and function, but also a convenient parameter for biophysical folding studies. Optical tweezers offer precise control in the force range relevant for protein folding and unfolding, from which single-molecule kinetic and thermodynamic information about these processes can be extracted. In this review, we describe both physical principles and practical aspects of optical tweezers measurements and discuss recent advances in the use of this technique for the study of protein folding. In particular, we describe the characterization of folding energy landscapes at high resolution, studies of structurally complex multidomain proteins, folding in the presence of chaperones, and the ability to investigate real-time cotranslational folding of a polypeptide.

DOI

Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers

Yanan Cai, Shaohui Yan, Zhaojun Wang, Runze Li, Yansheng Liang, Yuan Zhou, Xing Li, Xianghua Yu, Ming Lei, and Baoli Yao

Benefitting from the development of commercial spatial light modulator (SLM), holographic optical tweezers (HOT) have emerged as a powerful tool for life science, material science and particle physics. The calculation of computer-generated holograms (CGH) for generating multi-focus arrays plays a key role in HOT for trapping of a bunch of particles in parallel. To realize dynamic 3D manipulation, we propose a new tilted-plane GS algorithm for fast generation of multiple foci. The multi-focal spots with a uniformity of 99% can be generated in a tilted plane. The computation time for a CGH with 512×512 pixels is less than 0.1 second. We demonstrated the power of the algorithm by simultaneously trapping and rotating silica beads with a 7×7 spots array in three dimensions. The presented algorithm is expected as a powerful kernel of HOT.

DOI

Monday, September 7, 2020

Inverse integral transformation method to derive local viscosity distribution measured by optical tweezers†

Ruri Hidema, Zenji Yatabe, Hikari Takahashi, Ryusei Higashikawa and Hiroshi Suzuki

Complex fluids have a non-uniform local inner structure; this is enhanced under deformation, inducing a characteristic flow, such as an abrupt increase in extensional viscosity and drag reduction. However, it is challenging to derive and quantify the non-uniform local structure of a low-concentration solution. In this study, we attempted to characterize the non-uniformity of dilute and semi-dilute polymer and worm-like micellar solutions using the local viscosity at the micro scale. The power spectrum density (PSD) of the particle displacement, measured using optical tweezers, was analyzed to calculate the local viscosity, and two methods were compared. One is based on the PSD roll-off method, which yields a single representative viscosity of the solution. The other is based on our proposed method, called the inverse integral transformation method (IITM), for deriving the local viscosity distribution. The distribution obtained through the IITM reflects the non-uniformity of the solutions at the micro scale, i.e., the distribution widens above the entanglement concentrations of the polymer or viscoelastic worm-like micellar solutions.

DOI

Controllable Cellular Micromotors Based on Optical Tweezers

Xiaobin Zou, Qing Zheng, Dong Wu, Hongxiang Lei

Micromotors hold exciting prospects in biomedical applications but still face a great challenge. To date, there have been few reports of micromotors with high safety, flexible controllability, and full biocompatibility. Here, a multifunctional method based on an optical tweezer system is presented to realize controllable cellular micromotors. The method not only satisfies all of the above criteria but is also independent of the cell types and materials. Optical tweezers are used to generate a dynamic scanning optical trap along a given circular trajectory, which can trap and drive a microparticle or a single cell to move along the trajectory and thus generate a microvortex. Cells within the microvortex will be controllably rotated under an action of shear stress or torque and their rotation rate and direction can be controlled by changing the scanning frequency and direction of the dynamic optical trap. The proposed method is effective for both immotile target cells and swimming target cells. Additionally, it is further applied to realize synchronous translation and rotation of cellular micromotors and to assemble controllable and fully biocompatible cellular micromotor assays. The proposed method is believed to have potential applications in targeted drug delivery, biological microenvironment monitoring and sensing, and biomedical treatment.

DOI

The Mitotic Crosslinking Protein PRC1 Acts Like a Mechanical Dashpot to Resist Microtubule Sliding

Ignas Gaska, Mason E. Armstrong, April Alfieri, Scott Forth

Cell division in eukaryotes requires the regulated assembly of the spindle apparatus. The proper organization of microtubules within the spindle is driven by motor proteins that exert forces to slide filaments, whereas non-motor proteins crosslink filaments into higher-order motifs, such as overlapping bundles. It is not clear how active and passive forces are integrated to produce regulated mechanical outputs within spindles. Here, we employ simultaneous optical trapping and total internal reflection fluorescence (TIRF) microscopy to directly measure the frictional forces produced by the mitotic crosslinking protein PRC1 that resist microtubule sliding. These forces scale with microtubule sliding velocity and the number of PRC1 crosslinks but do not depend on overlap length or PRC1 density within overlaps. Our results suggest that PRC1 ensembles act similarly to a mechanical dashpot, producing significant resistance against fast motions but minimal resistance against slow motions, allowing for the integration of diverse motor activities into a single mechanical outcome.

DOI

Optical trapping in the presence of laser-induced thermal effects

J. A. Zenteno-Hernandez, J. Vázquez Lozano, J. A. Sarabia-Alonso, J. Ramírez-Ramírez, and R. Ramos-García

The inclusion of thermal effects in optical manipulation has been explored in diverse experiments, increasing the possibilities for applications in diverse areas. In this Letter, the results of combined optical and thermal manipulation in the vicinity of a highly absorbent hydrogenated amorphous silicon layer, which induces both the generation of convective currents and thermophoresis, are presented. In combination with the optical forces, thermal forces help reduce the optical power required to trap and manipulate micrometric polystyrene beads. Moreover, the inclusion of these effects allows the stacking and manipulation of multiple particles with a single optical trap along with the beam propagation, providing an extra tool for micromanipulation of a variety of samples.

DOI

Single-Cell Multimodal Analytical Approach by Integrating Raman Optical Tweezers and RNA Sequencing

Teng Fang, Wenhao Shang, Chang Liu, Yaoyao Liu, and Anpei Ye

Single-cell analysis has become a state-of-art approach to heterogeneity profiling in tumor cells. Herein, we realize a kind of single-cell multimodal analytical approach by combining single-cell RNA sequencing (scRNA-seq) with Raman optical tweezers (ROT), a label-free single-cell identification and isolation technique, and apply it to investigate drug sensitivity. The drug sensitivity of human BGC823 gastric cancer cells toward different drugs, paclitaxel and sodium dichloroacetate, was distinguished in the conjoint analytical way including morphology monitoring, Raman identification, and transcriptomic profiling. Each individual BGC823 cancer cell was measured by Raman spectroscopy, then nondestructively isolated out by ROT, and finally RNA-sequenced. Our results demonstrate each analytical mode can reflect cell response to the drugs from different perspectives and is consistent and complementary with each other. Therefore, we believe the multimodal analytical approach offers an access to comprehensive characterizations of the unicellular complexity, which especially makes sense for studying tumor heterogeneity or a desired special cell from a mixture cell sample such as whole blood.

DOI

Optical trapping of antihydrogen towards an atomic anti-clock

P. Crivelli & N. Kolachevsky

The unprecedented flux of low energy antiprotons delivered by the Extra Low ENergy Antiprotons (ELENA) ring, being under commissioning at CERN, will open a new era for precision tests with antimatter including laser and microwave spectroscopy and tests ofits gravitational behaviour. Here we present an alternative to magnetic trapping to perform ultra-high precision laser spectroscopy of antihydrogen. The proposed scheme is to load the ultra cold anti-hydrogen atoms produced by the GBAR experiment in an optical trap tuned at the magicwavelength of the 1S–2S transition in order to measure this interval at a level comparable or even better than its matter counter part. This will provide a very accurate test of Lorentz/CPT violating effects which can be parametrised in the framework of the Standard Model Extension.

DOI

Tuesday, September 1, 2020

Metallic particle manipulation with adjustable trapping range through customized field

Zhidong Bai, Shuoshuo Zhang, Yudong Lyu, Rui Zhao, Xifu Yue, Xiaolu Ge, Shenggui Fu, Zhongsheng Man

Since the invention of optical tweezers, optical manipulation has advanced significantly in many applications, including atomic physics, biochemistry and soft matter physics. Here, we propose a method to trap metallic particles with adjustable trapping range in the transverse plane with the help of customized field. By tailoring the polarization state of the incident field, the focal field with elongation in the direction perpendicular to optical axis can be turned in the 4 focusing system. As a result, optical trapping with tunable trapping range is possible when the metallic particle is interacted with such customized field.

DOI

Femtosecond laser trapping dynamics of two-photon absorbing hollow-core nanoparticles

Liping Gong, Xiaohe Zhang, Zhuqing Zhu, Guanghao Rui, Jun He, Yiping Cui, and Bing Gu

We investigate femtosecond laser trapping dynamics of two-photon absorbing hollow-core nanoparticles with different volume fractions and two-photon absorption (TPA) coefficients. Numerical simulations show that the hollow-core particles with low and high-volume fractions can easily be trapped and bounced by the tightly focused Gaussian laser pulses, respectively. Further studies show that the hollow-core particles with and without TPA can be identified, because the TPA effect enhances the radiation force, and subsequently the longitudinal force destabilizes the trap by pushing the particle away from the focal point. The results may find direct applications in particle sorting and characterizing the TPA coefficient of single nanoparticles.

DOI

Precise capture and dynamic relocation of nanoparticulate biomolecules through dielectrophoretic enhancement by vertical nanogap architectures

Eui-Sang Yu, Hyojin Lee, Sun-Mi Lee, Jiwon Kim, Taehyun Kim, Jongsu Lee, Chulki Kim, Minah Seo, Jae Hun Kim, Young Tae Byun, Seung-Chul Park, Seung-Yeol Lee, Sin-Doo Lee & Yong-Sang Ryu

Toward the development of surface-sensitive analytical techniques for biosensors and diagnostic biochip assays, a local integration of low-concentration target materials into the sensing region of interest is essential to improve the sensitivity and reliability of the devices. As a result, the dynamic process of sorting and accurate positioning the nanoparticulate biomolecules within pre-defined micro/nanostructures is critical, however, it remains a huge hurdle for the realization of practical surface-sensitive biosensors and biochips. A scalable, massive, and non-destructive trapping methodology based on dielectrophoretic forces is highly demanded for assembling nanoparticles and biosensing tools. Herein, we propose a vertical nanogap architecture with an electrode-insulator-electrode stack structure, facilitating the generation of strong dielectrophoretic forces at low voltages, to precisely capture and spatiotemporally manipulate nanoparticles and molecular assemblies, including lipid vesicles and amyloid-beta protofibrils/oligomers. Our vertical nanogap platform, allowing low-voltage nanoparticle captures on optical metasurface designs, provides new opportunities for constructing advanced surface-sensitive optoelectronic sensors.

DOI

Large Submillimeter Assembly of Microparticles with Necklace-like Patterns Formed by Laser Trapping at Solution Surface

Jia-Syun Lu, Hsuan-Yin Wang, Tetsuhiro Kudo, and Hiroshi Masuhara

In colloidal solution, nanoparticles can be optically trapped by a tightly focused laser beam, and they are assembled in a focal spot whose diameter is typically about one micrometer. We herein report that a large submillimeter sized assembly of polystyrene microparticles with necklace-like patterns are prepared by laser trapping at a solution surface. The light propagation outside the focal spot is directly confirmed by 1064 nm backscattering images, and finite difference time domain simulation well supports the idea that an optical potential is expanded outside the focal spot based on light propagation through whispering gallery mode. This demonstration opens a new method for fabrication of a millimeter-order huge assembly by a single tightly focused laser beam.

DOI

Specular-reflection photonic nanojet: physical basis and optical trapping application

I. V. Minin, Yu. E. Geints, A. A. Zemlyanov, and O. V. Minin

A specular-reflection photonic nanojet (s-PNJ) is a specific type of optical near-field subwavelength spatial localization originated from the constructive interference of direct and backward propagated optical waves focused by a transparent dielectric microparticle located near a flat reflecting mirror. The unique property of s-PNJ is reported for maintaining its spatial localization and high intensity when using microparticles with high refractive index contrast when a regular photonic nanojet is not formed. The physical principles of obtaining subwavelength optical focus in the specular-reflection mode of a PNJ are numerically studied and a comparative analysis of jet parameters obtained by the traditional schemes without and with reflection is carried out. Based on the s-PNJ, the physical concept of an optical tweezer integrated into the microfluidic device is proposed provided by the calculations of optical trapping forces of the trial gold nanosphere. Importantly, such an optical trap shows twice as high stability to Brownian motion of the captured nano-bead as compared to the conventional nanojet-based traps and can be relatively easy implemented.

DOI