.

Monday, August 31, 2020

Molecular height measurement by cell surface optical profilometry (CSOP)

Sungmin Son, Sho C. Takatori, Brian Belardi, Marija Podolski, Matthew H. Bakalar, and Daniel A. Fletcher

The physical dimensions of proteins and glycans on cell surfaces can critically affect cell function, for example, by preventing close contact between cells and limiting receptor accessibility. However, high-resolution measurements of molecular heights on native cell membranes have been difficult to obtain. Here we present a simple and rapid method that achieves nanometer height resolution by localizing fluorophores at the tip and base of cell surface molecules and determining their separation by radially averaging across many molecules. We use this method, which we call cell surface optical profilometry (CSOP), to quantify the height of key multidomain proteins on a model cell, as well as to capture average protein and glycan heights on native cell membranes. We show that average height of a protein is significantly smaller than its contour length, due to thermally driven bending and rotation on the membrane, and that height strongly depends on local surface and solution conditions. We find that average height increases with cell surface molecular crowding but decreases with solution crowding by solutes, both of which we confirm with molecular dynamics simulations. We also use experiments and simulations to determine the height of an epitope, based on the location of an antibody, which allows CSOP to profile various proteins and glycans on a native cell surface using antibodies and lectins. This versatile method for profiling cell surfaces has the potential to advance understanding of the molecular landscape of cells and the role of the molecular landscape in cell function.

DOI

Controlled rotation of cells using a single-beam anisotropic optical trap

Zihao Shan, Enfan Zhang, Dun Pi, Huiyao Gu, Wen Cao, Feng Lin, Zhen Cai, Xingkun Wu

Non-contact, noninvasive techniques to control the orientation of single living cells are highly valuable for biological research and clinical applications. We experimentally demonstrate a single-beam, single-fiber optical manipulation technique using an anisotropic, four-lobed light field propagated by low-order fiber mode LP21. The laser beam forms a rotationally non-axisymmetric optical multi-trap that may be directed to a spatial location on-demand, capable of cell translation, rotation, and orientation-holding with emitted power as low as 10 mW. We further developed a T-matrix based simulation method that can numerically model and optimize parameters that vary desired laser trap opto-mechanical properties, such as holding torque and capture efficiency. The demonstrated technique is easy to implement for cell micro-manipulation in complex research environments with multi-side occlusion, such as within a microfluidic channel in a lab-on-chip system, and may be used in conjunction with additional units for low-profile three-dimensional rotation and translation, or with other magnetic or electrical manipulation techniques.

DOI

Optothermal generation, trapping, and manipulation of microbubbles

J. A. Sarabia-Alonso, J. G. Ortega-Mendoza, J. C. Ramírez-San-Juan, P. Zaca-Morán, J. Ramírez-Ramírez, A. Padilla-Vivanco, F. M. Muñoz-Pérez, and R. Ramos-García

The most common approach to optically generate and manipulate bubbles in liquids involves temperature gradients induced by CW lasers. In this work, we present a method to accomplish both the generation of microbubbles and their 3D manipulation in ethanol through optothermal forces. These forces are triggered by light absorption from a nanosecond pulsed laser (λ = 532 nm) at silver nanoparticles photodeposited at the distal end of a multimode optical fiber. Light absorbed from each laser pulse quickly heats up the silver-ethanol interface beyond the ethanol critical-point (∼ 243 °C) before the heat diffuses through the liquid. Therefore, the liquid achieves a metastable state and owing to spontaneous nucleation converted to a vapor bubble attached to the optical fiber. The bubble grows with semi-spherical shape producing a counterjet in the final stage of the collapse. This jet reaches the hot nanoparticles vaporizing almost immediately and ejecting a microbubble. This microbubble-generation mechanism takes place with every laser pulse (10 kHz repetition rate) leading to the generation of a microbubbles stream. The microbubbles' velocities decrease as they move away from the optical fiber and eventually coalesce forming a larger bubble. The larger bubble is attracted to the optical fiber by the Marangoni force once it reaches a critical size while being continuously fed with each bubble of the microbubbles stream. The balance of the optothermal forces owing to the laser-pulse drives the 3D manipulation of the main bubble. A complete characterization of the trapping conditions is provided in this paper.

DOI

Nanoscale rotational optical manipulation

Masayuki Hoshina, Nobuhiko Yokoshi, and Hajime Ishihara

Light has momentum, and hence, it can move small particles. The optical tweezer, invented by Ashkin et al. [Opt. Lett. 11, 288 (1986)] is a representative application. It traps and manipulates microparticles and has led to great successes in the biosciences. Currently, optical manipulation of “nano-objects” is attracting growing attention, and new techniques have been proposed and realized. For flexible manipulation, push–pull switching [Phys. Rev. Lett. 109, 087402 (2012)] and super-resolution trapping by using the electronic resonance of nano-objects have been proposed [ACS Photonics 5, 318 (2017)]. However, regarding the “rotational operation” of nano-objects, the full potential of optical manipulation remains unknown. This study proposes mechanisms to realize rotation and direction switching of nano-objects in macroscopic and nanoscopic areas. By controlling the balance between the dissipative force and the gradient force by using optical nonlinearity, the direction of the macroscopic rotational motion of nano-objects is switched. Further, conversion between the spin angular momentum and orbital angular momentum by light scattering through localized surface plasmon resonance in metallic nano-complexes induces optical force for rotational motion in the nanoscale area. This study pieces out fundamental operations of the nanoscale optical manipulation of nanoparticles.

DOI

Miniature force sensor for absolute laser power measurements via radiation pressure at hundreds of watts

Alexandra B. Artusio-Glimpse, Ivan Ryger, Natalia A. Azarova, Paul A. Williams, Joshua A. Hadler, and John H. Lehman

We present a small power meter that detects the radiation pressure of an incident high-power laser. Given its small package and non-destructive interaction with the laser, this power meter is well suited to realizing a robust real-time, high-accuracy power measurement in laser-based manufacturing environments. The incident laser power is determined through interferometric measurement of displacement of a 20 mm diameter high reflectivity mirror, mounted at the center of a dual element spiral flexure. This device can measure laser power from 25 W to 400 W with a 260 mW/Hz−−−√ noise floor and ≤ 3.2% expanded uncertainty. We validate our device against a calibrated thermopile with simultaneous measurements of an unpolarized 1070 nm laser and report good agreement between the two systems. Finally, by referencing to an identical mechanical spring that does not see the incident laser, we suppress vibration noise in the power measurement by 14.8 dB over a 600 Hz measured bandwidth. This is an improvement over other radiation pressure based power meters that have previously been demonstrated.

DOI

Thursday, August 27, 2020

Establishment of an optical trapping curve for prediction of trapping parameters

Ayush Owhal, Dipankar Boruah, Sachin U. Belgamwar

Optical trapping is widely used to manipulate a small-sized particle freely suspended in the isotropic fluidic domain. Trapping is done by means of optical forces developed by conversing light beam. The active gradient forces, depends upon parameters like light wavelength, particle size, and refractive index of medium and particle. The viscous drag forces, depends upon parameter like viscosity of fluid, relative velocity of particle with respect to medium. The necessary condition for particle trapping is to maintain > . In this paper, a graphical approach is applied to predetermine the value of specific parameter such as relative velocity of particle and light wavelength under the necessary condition for optical trapping, while keeping other parameters are as fixed. Software simulation is performed with set of relative velocities on polystyrene small-sized particle in water channel to validate the graphical approach.

DOI

Optical trapping Rayleigh particles with a twist effect

Yao Zhang, Haoran Yan, Daomu Zhao

We theoretically and numerically investigate the focusing properties and the radiation forces produced by a focused rotating anisotropic generalized multi-Gaussian Schell model (RAGMGSM) beam. We find that for different parameters at the trapped plane, the intensity distribution would evolve into an elliptical dark hollow or elongated Gaussian beam profile. Compared to the focal plane, the trapped plane has an axial displacement due to the twist effects. Further, we demonstrate that two types of particles at different positions of the trapped plane can be trapped and rotated simultaneously by such a focused beam. Moreover, the influences of the beam index M, the coherence width δ, and the twist factor u on the radiation forces is elucidated respectively. The limits of each parameter for stability of optical trapping under a certain condition are explicitly discussed.

DOI

Optical pulling forces and their applications

Hang Li, Yongyin Cao, Lei-Ming Zhou, Xiaohao Xu, Tongtong Zhu, Yuzhi Shi, Cheng-Wei Qiu, and Weiqiang Ding

Optical manipulations utilizing the mechanical effect of light have been indispensable in various disciplines. Among those various manipulations, optical pulling has emerged recently as an attractive notion and captivated the popular imagination, not only because it constitutes a rich family of counterintuitive phenomena compared with traditional manipulations but also due to the profound physics underneath and potential applications. Beginning with a general introduction to optical forces, related theories, and methods, we review the progresses achieved in optical pulling forces using different mechanisms and configurations. Similar pulling forces in other forms of waves, including acoustic, water, and quantum matter waves, are also integrated. More importantly, we also include the progresses in counterintuitive left-handed optical torque and lateral optical force as the extensions of the pulling force. As a new manipulation degree of freedom, optical pulling force and related effects have potential applications in remote mass transportation, optical rotating, and optical sorting. They may also stimulate the investigations of counterintuitive phenomena in other forms of waves.

DOI

Nanoplastic Analysis by Online Coupling of Raman Microscopy and Field-Flow Fractionation Enabled by Optical Tweezers

Christian Schwaferts, Vanessa Sogne, Roland Welz, Florian Meier, Thorsten Klein, Reinhard Niessner, Martin Elsner, and Natalia P. Ivleva

Nanoplastic pollution is an emerging environmental concern, but current analytical approaches are facing limitations in this size range. However, the coupling of nanoparticle separation with chemical characterization bears potential to close this gap. Here, we realize the hyphenation of particle separation/characterization (field-flow fractionation (FFF), UV, and multiangle light scattering) with subsequent chemical identification by online Raman microspectroscopy (RM). The problem of low Raman scattering was overcome by trapping particles with 2D optical tweezers. This setup enabled RM to identify particles of different materials (polymers and inorganic) in the size range from 200 nm to 5 μm, with concentrations in the order of 1 mg/L (109 particles L–1). The hyphenation was realized for asymmetric flow FFF and centrifugal FFF, which separate particles on the basis of different properties. This technique shows potential for application in nanoplastic analysis, as well as many other fields of nanomaterial characterization.

DOI

Vortex preserving statistical optical beams

Zhiheng Xu, Xiaofei Li, Xin Liu, Sergey A. Ponomarenko, Yangjian Cai, and Chunhao Liang

We establish a general form of the cross-spectral density of statistical sources that generate vortex preserving partially coherent beams on propagation through any linear ABCD optical system. We illustrate our results by introducing a class of partially coherent vortex beams with a closed form cross-spectral density at the source and demonstrating the beam vortex structure preservation on free space propagation and imaging by a thin lens. We also show the capacity of such vortex preserving beams of any state of spatial coherence to trap nanoparticles with the refractive index smaller than that of a surrounding medium.

DOI

Wednesday, August 26, 2020

Opto-thermoelectric speckle tweezers

Abhay Kotnala, Pavana Siddhartha Kollipara and Yuebing Zheng

Opto-thermoelectric tweezers present a new paradigm for optical trapping and manipulation of particles using low-power and simple optics. New real-life applications of opto-thermoelectric tweezers in areas such as biophysics, microfluidics, and nanomanufacturing will require them to have large-scale and high-throughput manipulation capabilities in complex environments. Here, we present opto-thermoelectric speckle tweezers, which use speckle field consisting of many randomly distributed thermal hotspots that arise from an optical speckle pattern to trap multiple particles over large areas. By further integrating the speckle tweezers with a microfluidic system, we experimentally demonstrate their application for size-based nanoparticle filtration. With their low-power operation, simplicity, and versatility, opto-thermoelectric speckle tweezers will broaden the applications of optical manipulation techniques.

DOI

Demonstration of a simple technique for controllable revolution of light-absorbing particles in air

Alexey P. Porfirev, Anna B. Dubman, and Denis P. Porfiriev

The rotation of optically trapped particles is used in many applications for the realization of different micromechanical devices, such as micropumps, microrotors, and microgyroscopes, as well as for the investigation of particle interactions. Although for transparent micro-objects in both liquid media and vacuum, the rotation can easily be realized by transfer of the spin angular or orbital angular momentum from the light to the object. In the case of light-absorbing micro-objects in gaseous media, such transfers are insignificant in comparison with the thermal effects arising from the photo- and thermo-phoresis phenomena initiating the movement of trapped particles in a laser beam. Currently, proposed methods using a single focused laser beam, tapered-ring optical traps, or single and multiple bottle beams (BBs) have various limitations—for example, the inability to control the direction of the revolution of trapped particles or the low revolution frequency and small revolution angles. Here we propose a simple method for the realization of the revolution of airborne light-absorbing particles. The method is based on a combination of a circular diaphragm and a rotating cylindrical lens, enabling the generation of linear optical BBs. Our results show the flexibility and reliability of the proposed technique, allowing such laser traps to be used in various optical systems for the manipulation of micro-objects with different dimensions and shapes.

DOI

Arrays of individually controllable optical tweezers based on 3D-printed microlens arrays

Dominik Schäffner, Tilman Preuschoff, Simon Ristok, Lukas Brozio, Malte Schlosser, Harald Giessen, and Gerhard Birkl

We present a novel platform of optical tweezers which combines rapid prototyping of user-definable microlens arrays with spatial light modulation (SLM) for dynamical control of each associated tweezer spot. Applying femtosecond direct laser writing, we manufacture a microlens array of 97 lenslets exhibiting quadratic and hexagonal packing and a transition region between the two. We use a digital micromirror device (DMD) to adapt the light field illuminating the individual lenslets and present a detailed characterization of the full optical system. In an unprecedented fashion, this novel platform combines the stability given by prefabricated solid optical elements, fast reengineering by rapid optical prototyping, DMD-based real-time control of each focal spot, and extensive scalability of the tweezer pattern. The accessible tweezer properties are adaptable within a wide range of parameters in a straightforward way.

DOI

Rotation of Single-Molecule Emission Polarization by Plasmonic Nanorods

Tiancheng Zuo, Harrison J. Goldwyn, Benjamin P. Isaacoff, David J. Masiello, and Julie S. Biteen

The strong light–matter interactions between dyes and plasmonic nanoantennas enable the study of fundamental molecular-optical processes. Here, we overcome conventional limitations with high-throughput single-molecule polarization-resolved microscopy to measure dye emission polarization modifications upon near-field coupling to a gold nanorod. We determine that the emission polarization distribution is not only rotated toward the nanorod’s dominant localized surface plasmon mode as expected, but it is also unintuitively broadened. With a reduced-order analytical model, we elucidate how this distribution broadening depends upon both far-field interference and off-resonant coupling between the molecular dipole and the nanorod transverse plasmon mode. Experiments and modeling reveal that a nearby plasmonic nanoantenna affects dye emission polarization through a multicolor process, even when the orthogonal plasmon modes are separated by approximately 3 times the dye emission line width. Beyond advancing our understanding of plasmon-coupled emission modifications, this work promises to improve high-sensitivity single-molecule fluorescence imaging, biosensing, and spectral engineering.

DOI

Advances in Fiber‐Optic Technology for Point‐of‐Care Diagnosis and In Vivo Biosensing

Shawana Tabassum, and Ratnesh Kumar

Development of reliable, sensitive, selective, and miniaturized sensing technologies is critical for health assessment and early diagnosis and treatment of diseases/anomalies while simultaneously mitigating the challenges associated with in vivo measurements. Some critical constraints to the realization of in vivo measurements include the necessity to fabricate the sensor on a tightly constrained footprint while ensuring acceptable biocompatibility, accuracy, and reliability. The inherent light‐guiding properties of optical fibers over long distances, their microscopic cross‐section that can be structured at the nanoscale to manipulate the light transmittance/reflectance spectrum, excellent biocompatibility enabling their efficient integration with biorecognition molecules, immunity to electromagnetic interference, mechanical flexibility, and low cost have been inviting research attention to utilize these unique features for in vivo and label‐free point‐of‐care diagnostics. Hence, fiber‐optic biosensing has become a promising research thrust, with a plethora of emerging methodologies to develop ultrasensitive and selective sensing probes. A unified presentation of the research trends on biosensors incorporated into optical fibers is presented.

DOI

Blog on Optical Tweezers returning back to normal.

 Blog on Optical Tweezers returning back to normal.