Immobilizing individual living microorganisms at designated positions in space is important to study their metabolism and to initiate an in situ scrutiny of the complexity of life at the nanoscale. While optical tweezers enable the trapping of large cells at the focus of a laser beam, they face difficulties in maintaining them steady and can become invasive and produce substantial damage that prevents preserving the organisms intact for sufficient time to be studied. Here we demonstrate a novel optical trapping scheme that allows us to hold living Escherichia coli bacteria for several hours using moderate light intensities. We pattern metallic nanoantennas on a glass substrate to produce strong light intensity gradients responsible for the trapping mechanism. Several individual bacteria are trapped simultaneously with their orientation fixed by the asymmetry of the antennas. This unprecedented immobilization of bacteria opens an avenue toward observing nanoscopic processes associated with cell metabolism, as well as the response of individual live microorganisms to external stimuli, much in the same way as pluricellular organisms are studied in biology.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Friday, January 23, 2009
Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas
Immobilizing individual living microorganisms at designated positions in space is important to study their metabolism and to initiate an in situ scrutiny of the complexity of life at the nanoscale. While optical tweezers enable the trapping of large cells at the focus of a laser beam, they face difficulties in maintaining them steady and can become invasive and produce substantial damage that prevents preserving the organisms intact for sufficient time to be studied. Here we demonstrate a novel optical trapping scheme that allows us to hold living Escherichia coli bacteria for several hours using moderate light intensities. We pattern metallic nanoantennas on a glass substrate to produce strong light intensity gradients responsible for the trapping mechanism. Several individual bacteria are trapped simultaneously with their orientation fixed by the asymmetry of the antennas. This unprecedented immobilization of bacteria opens an avenue toward observing nanoscopic processes associated with cell metabolism, as well as the response of individual live microorganisms to external stimuli, much in the same way as pluricellular organisms are studied in biology.
Tuesday, January 20, 2009
Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements
The increasing interest in the mechanical properties of complex systems at mesoscopic scale has recently fueled the development of new experimental techniques, collectively indicated as microrheology. Unlike bulk-based approaches (macrorheology), these new techniques make use of micrometric probes (usually microspheres) which explore the mechanical properties of the surrounding medium.In this paper we discuss the basic idea of microrheology and we will focus on one specific technique based on optical tweezers (OT). The discussion starts from Newtonian fluids to tackle the more general case of complex fluids, also showing results of these techniques on solutions of a relevant biomolecule: hyaluronic acid (HA). In particular, we study the viscoelastic properties of low molecular weight HA (155 kDa) at low ionic strength over an extended frequency range (0.1–1000 Hz) and in a wide range of concentrations (0.01–20 mg ml−1), which include both the dilute and semidilute regime. In the concentration range here explored and within the test frequencies covered by our techniques, samples prevalently exhibit a viscous behavior, the elastic contribution becoming significant at the highest concentrations. By comparing OT outcomes to those obtained by a traditional rheometer, we found that they were in good agreement in the overlapping frequency range of the two techniques, thus confirming the reliability of the microrheological approach.
Longitudinal optical binding of several spherical particles studied by the coupled dipole method
We employed a coupled dipole method (CDM) to study theoretically the interaction among several spherical particles placed into two counter-propagating mutually incoherent Bessel beams. This interaction is mediated by the light scattering among the particles. It has already been demonstrated that, if the intensity of the incident beam is sufficiently high, the scattered light is strong enough to self-arrange the objects in the space. Namely, the counter-propagating and incoherent Bessel beams are extremely useful to be employed because the interaction among the particles via the scattered light is not superimposed by other optical forces coming from the radiation pressure of each beam and axial gradients of the beam intensities. Therefore so-called optical binding between the particles is enhanced and leads to several stable configurations of the particles. We studied these stable configurations using the CDM for various properties of the beams and particles and we also compared these theoretical results with the experimental observations.
DOI
Optical alignment of a cylindrical object
This paper reports the use of theory of geometrical optics to analyze how an optical field interacts with a cylindrical object. Of great interest is the mechanism with which a laser beam with a special profile manipulates a particle which has a similar shape as the beam profile. The present paper investigates the interaction between a cylinder-shape fiber and a laser beam with a line-shape profile. Based on the Fresnel equation, a numerical model was formulated to describe the optical torque generated by a projected line-shape optical image. The drag force was also considered in the model to accurately describe the fiber's movement in a liquid. A differential equation is established to describe this damped movement of the cylinder. Parametric analysis was carried out to investigate the influence of the beam power and the liquid viscosity as well as the density, the length, and the diameter of the cylindrical object. The movement of a carbon fiber was measured with a CCD camera. The observed experimental results agree well with the theoretical results.
DOI
Holographic phase contrast for dynamic multiple-beam optical tweezers
We propose and demonstrate holographic phase contrast (HPC) as a new method to transfer a spatial phase distribution of arbitrary shape into a corresponding intensity pattern. A powerful application of HPC is the use in optical tweezers to dynamically control multiple traps like arrays or even more complex trapping geometries. Due to the image plane nature of HPC no hologram calculation is required and hence real-time control of complex tweezers configurations is possible. The inherent optical amplification by HPC can improve the fundamental limit in trapping power in optical tweezers that are based on common spatial light modulators.
DOI
Parallel particle identification and separation for active optical sorting
An instrument for rapidly and non-invasively sorting different cell specimens is a valuable tool in biological and medical research. Parallel identification of target specimens through image analysis can sort based on highly tuneable selection criteria and can enable high-speed optical sorting when matched with a rapidly reconfigurable optical sorting field. We demonstrate the potential of such a system using colloidal polystyrene microspheres. By combining machine vision with a parallel add-on optical manipulation scheme, we were able to move identified particles over a distance of several hundred micrometres at velocities that exceed 800 µm s−1 and are easily scalable to higher velocities.
DOI
Holographic twin traps
We present a new method that enables the generation of arbitrary positioned dual-beam traps without additional hardware in a single-beam holographic optical tweezers setup. By this approach, stable trapping at medium numerical aperture and long working distance is realized on a standard Zeiss Axiovert 200 M research microscope. Simulations of focus separations and spherical aberrations were performed and first experimental results are presented.
DOI
Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins
Two-photon photopolymerization of UV curing resins is an attractive method for the fabrication of microscopic transparent objects with size in the tens of micrometers range. We have been using this method to produce three-dimensional (3D) structures for optical micromanipulation, in an optical system based on a femtosecond laser. By carefully adjusting the laser power and the exposure time we were able to create micro-objects with well-defined 3D features and with resolution below the diffraction limit of light. We discuss the performance and capabilities of a microfabrication system, with some examples of its products.
DOI
Monday, January 19, 2009
Optical tweezers: not just for physicists anymore
Friday, January 9, 2009
Rotation of absorbing spheres in Laguerre-Gaussian beams
It is well known that optical vortex beams carry orbital as well as spin angular momentum. This optical angular momentum can manifest itself mechanically, for example in tightly focused Laguerre-Gaussian beams, where trapped, weakly absorbing spheres rotate at a rate proportional to the total angular momentum carried by the beam. In the present paper we subject this system to a rigorous analysis involving expansions in vector spherical wave functions that culminates in a simple expression for the torque on the sphere. It is seen that, for large weakly absorbing spheres, the induced torque per unit power is independent of the detailed structure of the incident field, being a simple function of two indices that describe the helicity and polarization state of the beam, the relative refractive indices of the sphere and ambient medium, the absorption index of the sphere, and its radius. A number of relationships between the coefficients of these expansions are also developed.
Precision optical trapping via a programmable direct-digital-synthesis-based controller for acousto-optic deflectors
We describe a simple-to-construct programmable direct-digital-synthesis-based controller for use with acousto-optic deflectors. Our controller corrects for nonlinear diffraction efficiency versus diffraction angle, provides superior stability, functionality, and configurability, and costs a fraction of commercially available systems. Using this instrument, we move a 1 µm diameter bead by 1-nm-sized steps and resolve these steps.
Direct measurements of the frequency-dependent dielectrophoresis force
Dielectrophoresis (DEP), the phenomenon of directed motion of electrically polarizable particles in a nonuniform electric field, is promising for applications in biochemical separation and filtration. For colloidal particles in suspension, the relaxation of the ionic species in the shear layer gives rise to a frequency-dependent, bidirectional DEP force in the radio frequency range. However, quantification methods of the DEP force on individual particles with the pico-Newton resolution required for the development of theories and design of device applications are lacking. We report the use of optical tweezers as a force sensor and a lock-in phase-sensitive technique for analysis of the particlemotion in an amplitude modulated DEP force. The coherent detection and sensing scheme yielded not only unprecedented sensitivity for DEP force measurements, but also provided a selectivity that clearly distinguishes the pure DEP force from all the other forces in the system, including electrophoresis, electro-osmosis, heat-induced convection, and Brownian forces, all of which can hamper accurate measurements through other existingmethods. Using optical tweezers-based force transducers already developed in our laboratory, we have results that quantify the frequency-dependent DEP forceand the crossover frequency of individual particles with this new experimental method.
Probing technique using circular motion of a microsphere controlled by optical pressure for a nanocoordinate measuring machine
A new surface probing technique using the circular motion of an optically-trapped microsphere is proposed for a nanocoordinate measuring system. The probe sphere is oscillated circularly in the plane perpendicular to the probe axis and the circular orbit of the probe sphere is monitored for the detection of the position and normal vector direction of the surface. The principle of detection is based on changes in the circular orbit of the microsphere. When the probe approaches a work surface, the orbit of the probe sphere becomes elliptical. The minor-axis length and the minor-axis angle of the ellipse are then used as parameters to detect the position and normal vector direction of the surface, respectively. In this study, the circular motion probe is shown to have a resolution of position detection of 39 nm, and the accuracy of measuring a normal vector to the surface is on the order of 3 °.
DOI
Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry
Saturday, January 3, 2009
Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides
Optically induced potential energy landscapes
Dual filtered backprojection for micro-rotation confocal microscopy
Live cell lithography: Using optical tweezers to create synthetic tissue
Utkur Mirsaidov, Jan Scrimgeour, Winston Timp, Kaethe Beck, Mustafa Mir, Paul Matsudaira and Gregory Timp
We demonstrate a new method for creating synthetic tissue that has the potential to capture the three-dimensional (3D) complexity of a multi-cellular organism with submicron precision. Using multiple laminar fluid flows in a microfluidic network, we convey cells to an assembly area where multiple, time-shared optical tweezers are used to organize them into a complex array. The cells are then encapsulated in a 30 m × 30 m × 45 m volume of photopolymerizable hydrogel that mimicks an extra-cellular matrix. To extend the size, shape and constituency of the array without loss of viability, we then step to an adjacent location while maintaining registration with the reference array, and repeat the process. Using this step-and-repeat method, we formed a heterogeneous array of E. coli genetically engineered with a lac switch that is functionally linked to fluorescence reporters. We then induced the array using ligands through a microfluidic network and followed the space-time development of the fluorescence to evaluate viability and metabolic activity.